Что такое нанотехнология? Что такое НаноТехнологии

/ТК 229 под нанотехнологиями подразумевается следующее:

  • знание и управление процессами, как правило, в масштабе 1 нм , но не исключающее масштаб менее 100 нм в одном или более измерениях, когда ввод в действие размерного эффекта (явления) приводит к возможности новых применений;
  • использование свойств объектов и материалов в нанометровом масштабе, которые отличаются от свойств свободных атомов или молекул, а также от объемных свойств вещества, состоящего из этих атомов или молекул, для создания более совершенных материалов, приборов, систем, реализующих эти свойства.

2.Согласно «Концепции развития в Российской Федерации работ в области нанотехнологий на период до 2010 года » ( г.) нанотехнология определяется как совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, хотя бы в одном измерении, и в результате этого получившие принципиально новые качества , позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба.

Практический аспект нанотехнологий включает в себя производство устройств и их компонентов, необходимых для создания, обработки и манипуляции атомами, молекулами и наночастицами. Подразумевается, что не обязательно объект должен обладать хоть одним линейным размером менее 100 нм - это могут быть макрообъекты, атомарная структура которых контролируемо создаётся с разрешением на уровне отдельных атомов, либо же содержащие в себе нанообъекты . В более широком смысле этот термин охватывает также методы диагностики, характерологии и исследований таких объектов.

Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные, макроскопические технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул или агрегатов молекул (например, силы Ван-дер-Ваальса), квантовые эффекты .

Нанотехнология и в особенности молекулярная технология - новые, очень мало исследованные дисциплины. Основные открытия, предсказываемые в этой области, пока не сделаны. Тем не менее, проводимые исследования уже дают практические результаты. Использование в нанотехнологии передовых научных достижений позволяет относить её к высоким технологиям .

В ходе теоретического исследования данной возможности, появились гипотетические сценарии конца света, которые предполагают, что нанороботы поглотят всю биомассу Земли, выполняя свою программу саморазмножения (так называемая «серая слизь » или «серая жижа»).

Первые предположения о возможности исследования объектов на атомном уровне можно встретить в книге «Opticks» Исаака Ньютона, вышедшей в 1704 году. В книге Ньютон выражает надежду, что микроскопы будущего когда-нибудь смогут исследовать «тайны корпускул» .

Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах: «Машины создания: Грядущая эра нанотехнологии » («Engines of Creation: The Coming Era of Nanotechnology» ) и «Nanosystems: Molecular Machinery, Manufacturing, and Computation» . Центральное место в его исследованиях играли математические расчёты, с помощью которых можно было проанализировать работу устройства размерами в несколько нанометров.

Фундаментальные положения

Недавно было выяснено, что законы трения в макро- и наномире оказались похожи .

Наночастицы

Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы размерами от 1 до 100 нанометров обычно называют «наночастицами ». Так, например, оказалось, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей . Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью , зато более дёшевы и могут быть механически гибкими. Удается добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров - белками , нуклеиновыми кислотами и др. Тщательно очищенные наночастицы могут самовыстраиваться в определённые структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства.

Нанообъекты делятся на 3 основных класса: трёхмерные частицы, получаемые взрывом проводников, плазменным синтезом, восстановлением тонких плёнок и т. д.; двумерные объекты - плёнки, получаемые методами молекулярного наслаивания, CVD , ALD, методом ионного наслаивания и т. д.; одномерные объекты - вискеры, эти объекты получаются методом молекулярного наслаивания, введением веществ в цилиндрические микропоры и т. д. Также существуют нанокомпозиты - материалы, полученные введением наночастиц в какие-либо матрицы. На данный момент обширное применение получил только метод микролитографии, позволяющий получать на поверхности матриц плоские островковые объекты размером от 50 нм, применяется он в электронике; метод CVD и ALD в основном применяется для создания микронных плёнок. Прочие методы в основном используются в научных целях. В особенности следует отметить методы ионного и молекулярного наслаивания, поскольку с их помощью возможно создание реальных монослоёв .

Особый класс составляют органические наночастицы как естественного, так и искусственного происхождения.

Поскольку многие физические и химические свойства наночастиц, в отличие от объемных материалов, сильно зависят от их размера, в последние годы проявляется значительный интерес к методам измерения размеров наночастиц в растворах: анализ траекторий наночастиц , динамическое светорассеяние , седиментационный анализ , ультразвуковые методы.

Самоорганизация наночастиц

Один из важнейших вопросов, стоящих перед нанотехнологией - как заставить молекулы группироваться определённым способом, самоорганизовываться, чтобы в итоге получить новые материалы или устройства. Этой проблемой занимается раздел химии - супрамолекулярная химия . Она изучает не отдельные молекулы, а взаимодействия между молекулами, которые способны упорядочить молекулы определённым способом, создавая новые вещества и материалы. Обнадёживает то, что в природе действительно существуют подобные системы и осуществляются подобные процессы. Так, известны биополимеры , способные организовываться в особые структуры. Один из примеров - белки , которые не только могут сворачиваться в глобулярную форму, но и образовывать комплексы - структуры, включающие несколько молекул белков . Уже сейчас существует метод синтеза, использующий специфические свойства молекулы ДНК . Берётся комплементарная ДНК (кДНК), к одному из концов подсоединяется молекула А или Б. Имеем 2 вещества: ----А и ----Б, где ---- - условное изображение одинарной молекулы ДНК. Теперь, если смешать эти 2 вещества, между двумя одинарными цепочками ДНК образуются водородные связи, которые притянут молекулы А и Б друг к другу. Условно изобразим полученное соединение: ====АБ. Молекула ДНК может быть легко удалена после окончания процесса.

Проблема образования агломератов

Частицы размерами порядка нанометров или наночастицы , как их называют в научных кругах, имеют одно свойство, которое очень мешает их использованию. Они могут образовывать агломераты , то есть слипаться друг с другом. Так как наночастицы многообещающи в отраслях производства керамики , металлургии , эту проблему необходимо решать. Одно из возможных решений - использование веществ - диспергентов , таких как цитрат аммония (водный раствор), имидазолин, олеиновый спирт (нерастворимых в воде). Их можно добавлять в среду, содержащую наночастицы. Подробнее это рассмотрено в источнике «Organic Additives And Ceramic Processing», D. J. Shanefield, Kluwer Academic Publ., Boston (англ.).

Новейшие достижения

Наноматериалы

Материалы, разработанные на основе наночастиц с уникальными характеристиками, вытекающими из микроскопических размеров их составляющих.

  • Углеродные нанотрубки - протяжённые цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров, состоящие из одной или нескольких свёрнутых в трубку гексагональных графитовых плоскостей (графенов) и обычно заканчивающиеся полусферической головкой.
  • Фуллерены - молекулярные соединения, принадлежащие классу аллотропных форм углерода (другие - алмаз , карбин и графит) и представляющие собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода.
  • Графен - монослой атомов углерода, полученный в октябре 2004 года в Манчестерском университете (The University Of Manchester). Графен можно использовать как детектор молекул (NO 2), позволяющий детектировать приход и уход единичных молекул. Носители зарядов в графене обладают высокой подвижностью при комнатной температуре, благодаря чему с решением проблемы формирования запрещённой зоны в этом полуметалле графен оказывается перспективным материалом, заменяющим кремний в интегральных микросхемах.
  • Нанокристаллы
  • Аэрографит - самый твёрдый материал
  • Наноаккумуляторы - в начале 2005 года компания Altair Nanotechnologies (США) объявила о создании инновационного нанотехнологического материала для электродов литий-ионных аккумуляторов . Аккумуляторы с Li 4 Ti 5 O 12 электродами имеют время зарядки 10-15 минут. В феврале 2006 года компания начала производство аккумуляторов на своём заводе в Индиане . В марте Altairnano и компания Boshart Engineering заключили соглашение о совместном создании электромобиля . В мае успешно завершились испытания автомобильных наноаккумуляторов. В июле Altair Nanotechnologies получила первый заказ на поставку литий-ионных аккумуляторов для электромобилей .
  • Самоочищающиеся поверхности на основе эффекта лотоса .

Методы исследования

В силу того, что нанотехнология - междисциплинарная наука, для проведения научных исследований используют те же методы, что и «классические» биология, химия, физика. Одним из относительно новых методов исследований в области нанотехнологии является сканирующая зондовая микроскопия. В настоящее время в исследовательских лабораториях используются не только «классические» зондовые микроскопы, но и СЗМ в комплексе с оптическими микроскопами, электронными микроскопами, спектрометрами комбинационного (рамановского) рассеяния и флюоресценции, ультрамикротомами (для получения трёхмерной структуры материалов).

Сканирующая зондовая микроскопия

Одним из методов, используемых для изучения нанообъектов, является сканирующая зондовая микроскопия . В рамках сканирующей зондовой микроскопии реализованы оптические методики.

Исследования свойств поверхности с помощью сканирующего зондового микроскопа (СЗМ) проводятся на воздухе при атмосферном давлении, в вакууме и даже в жидкости. Различные СЗМ методики позволяют изучать как проводящие, так и не проводящие объекты. Кроме того, СЗМ поддерживает совмещение с другими методами исследования, например с классической оптической микроскопией и спектральными методами.

При выполнении подобных манипуляций возникает ряд технических трудностей. В частности, требуется создание условий сверхвысокого вакуума (10 −11 тор), необходимо охлаждать подложку и микроскоп до сверхнизких температур (4-10 К), поверхность подложки должна быть атомарно чистой и атомарно гладкой, для чего применяются специальные методы её приготовления. Охлаждение подложки производится с целью уменьшения поверхностной диффузии осаждаемых атомов, охлаждение микроскопа позволяет избавиться от термодрейфа.

Для решения задач, связанных с точным измерением топографии, свойств поверхности и с манипуляцией нанообъектами посредством зонда сканирующего атомно-силового микроскопа, была предложена методология особенность-ориентированного сканирования (ООС). ООС подход позволяет в автоматическом режиме реализовать нанотехнологию «снизу-вверх», то есть технологию поэлементной сборки наноустройств. При этом работа производится при комнатной температуре, поскольку ООС в реальном масштабе времени определяет скорость дрейфа и выполняет компенсацию вызываемого дрейфом смещения. На многозондовых инструментах ООС позволяет последовательно применить к нанообъекту любое количество аналитических и технологических зондов, что даёт возможность создавать сложные нанотехнологические процессы, состоящие из большого числа измерительных, технологических и контрольных операций.

Однако, в большинстве случаев нет необходимости манипулировать отдельными атомами или наночастицами и достаточно обычных лабораторных условий для изучения интересующих объектов.

Наномедицина и химическая промышленность

Направление в современной медицине, основанное на использовании уникальных свойств наноматериалов и нанообъектов для отслеживания, конструирования и изменения биологических систем человека на наномолекулярном уровне.

  • Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис-пептиды).

Компьютеры и микроэлектроника

  • Центральные процессоры - 15 октября 2007 года компания Intel заявила о разработке нового прототипа процессора , содержащего наименьший структурный элемент размерами примерно 45 нм . В дальнейшем компания намерена достичь размеров структурных элементов до 5 нм. Основной конкурент Intel , компания AMD , также давно использует для производства своих процессоров нанотехнологические процессы, разработанные совместно с компанией IBM . Характерным отличием от разработок Intel является применение дополнительного изолирующего слоя SOI , препятствующего утечке тока за счет дополнительной изоляции структур, формирующих транзистор. Уже существуют рабочие образцы процессоров с транзисторами размером 32 нм и опытные образцы на 22 нм .
  • Жёсткие диски - в 2007 году Питер Грюнберг и Альберт Ферт получили Нобелевскую премию по физике за открытие GMR-эффекта , позволяющего производить запись данных на жестких дисках с атомарной плотностью информации.
  • Сканирующий зондовый микроскоп - микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. Обычно под взаимодействием понимается притяжение или отталкивание кантилевера от поверхности из-за сил Ван-дер-Ваальса. Но при использовании специальных кантилеверов можно изучать электрические и магнитные свойства поверхности. СЗМ может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение сканирующих зондовых микроскопов зависит от характеристик используемых зондов. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.
  • Антенна-осциллятор - 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна-осциллятор размерами порядка 1 мкм . Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц , что позволяет передавать с её помощью огромные объёмы информации.
  • Плазмоны - коллективные колебания свободных электронов в металле. Характерной особенностью возбуждения плазмонов можно считать так называемый плазмонный резонанс, впервые предсказанный Ми в начале XX века. Длина волны плазмонного резонанса, например, для сферической частицы серебра диаметром 50 нм составляет примерно 400 нм, что указывает на возможность регистрации наночастиц далеко за границами дифракционного предела (длина волны излучения много больше размеров частицы). В начале -го года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии - наноплазмонике. Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.

Робототехника

  • Молекулярные роторы - синтетические наноразмерные двигатели, способные генерировать крутящий момент при приложении к ним достаточного количества энергии.
  • Молекулярные пропеллеры - наноразмерные молекулы в форме винта, способные совершать вращательные движения благодаря своей специальной форме, аналогичной форме макроскопического винта.
  • С 2006 года в рамках проекта RoboCup (чемпионат по футболу среди роботов) появилась номинация «Nanogram Competition», в которой игровое поле представляет из себя квадрат со стороной 2,5 мм. Максимальный размер игрока ограничен 300 мкм.

Концептуальные устройства

  • Nokia Morph - проект сотового телефона будущего, созданный совместно научно-исследовательским подразделением Nokia и Кембриджским университетом на основе использования нанотехнологических материалов.

Индустрия нанотехнологий

Ряд исследователей указывают на то, что негативное отношение к нанотехнологии у неспециалистов может быть связано с религиозностью , а также из-за опасений, связанных с токсичностью наноматериалов . Особо это актуально для широко разрекламированного коллоидного серебра , свойства и безопасность которого находятся под большим вопросом.

Реакция мирового сообщества на развитие нанотехнологий

Тема последствий развития нанотехнологий становится объектом философских исследований. Так, о перспективах развития нанотехнологий говорилось на прошедшей в 2007 году международной футурологической конференции Transvision, организованной WTA .

Реакция российского общества на развитие нанотехнологий

26 апреля 2007 года президент России Владимир Путин в послании Федеральному Собранию назвал нанотехнологии «наиболее приоритетным направлением развития науки и техники» . Он предположил, что для большинства россиян нанотехнологии сегодня - «некая абстракция вроде атомной энергии в 30-е годы» .

Затем о необходимости развития нанотехнологий заявляет ряд российских общественных организаций.

8 октября 2008 года было создано «Нанотехнологическое общество России», в задачи которого входит «просвещение российского общества в области нанотехнологий и формирование благоприятного общественного мнения в пользу нанотехнологического развития страны»

6 октября 2009 года президент Дмитрий Медведев на открытии Международного форума по нанотехнологиям в Москве заявил: «Главное, чтобы не произошло по известному сценарию - мировая экономика начинает расти, экспортный потенциал возрастает, и никакие нанотехнологии не нужны и можно дальше продавать энергоносители. Этот сценарий был бы для нашей страны просто губительным. Все мы должны сделать так, чтобы нанотехнологии стали одной из мощнейших отраслей экономики. Именно к такому сценарию развития я вас призываю», - подчеркнул Д. Медведев, обращаясь к участникам форума. При этом президент особо отметил, что «пока эта (государственная) поддержка (бизнеса) носит безалаберный характер, пока мы не смогли ухватить суть этой работы, надо наладить эту работу». Д. Медведев также подчеркнул, что Роснано до 2015 года на эти цели будет выделено 318 млрд рублей. Д. Медведев предложил Минобрнауки увеличить количество специальностей в связи с развитием потребности в квалифицированных кадрах для нанотехнологий, а также создать госзаказ на инновации и открыть «зеленый коридор» для экспорта высокотехнологичных товаров.

Нанотехнологии в искусстве

Ряд произведений американской художницы Наташи Вита-Мор касается нанотехнологической тематики .

Нанороботам и их роли в социальном прогрессе посвящена композиция «Nanobots» российской группы Re-Zone.

Нанотехнологии в фантастике

В широко известном произведении русского писателя Н. Лескова «Левша» ( год) есть любопытный фрагмент:

Увеличение в 5 000 000 раз обеспечивают современные электронные и атомно-силовые микроскопы , считающиеся основными инструментами нанотехнологий. Таким образом, литературного героя Левшу можно считать первым в истории «нанотехнологом».

Некоторые отрицательные последствия неконтролируемого развития нанотехнологий описаны в произведениях М. Крайтона («Рой»), С. Лема («Осмотр на месте» и «Мир на Земле »), С. Лукьяненко («Нечего делить»).

В научно-фантастическом сериале «Звёздные врата: ЗВ-1 » одной из самых технически и социально развитых рас является раса «репликаторов», возникшая в результате неудавшегося опыта Древних с использованием и описанием различных вариантов применения нанотехнологий. В фильме «День, когда Земля остановилась » с Киану Ривзом в главной роли, инопланетная цивилизация выносит человечеству смертный приговор и чуть было не уничтожает все на планете при помощи самовоспроизводящихся нанорепликантов-жуков, пожирающих все на своем пути.

В фильмах "Терминатор 2" и "Терминатор 3" нанотехнологии представлены в виде роботов «Т-1000» и «Тэ-Икс»

Форумы и выставки

Роснано 2010

Первый в России Международный форум по нанотехнологиям Rusnanotech прошел в 2008 году , впоследствии ставший ежегодным. Работа по организации Международного форума по нанотехнологиям проводилась в соответствии с Концепцией, одобренной наблюдательным советом ГК «Роснанотех » 31 января г. и распоряжением Правительства Российской Федерации № 1169-р от 12.08.2008 г. Форум прошел с 3 по 5 декабря г. в г. Москве в Центральном выставочном комплексе «Экспоцентр». Программа Форума состояла из деловой части, научно-технологических секций, стендовых докладов, докладов участников Международного конкурса научных работ молодых ученых в области нанотехнологий и выставки.

Всего в мероприятиях Форума приняло участие 9024 участника и посетителя из России и 32-х зарубежных стран, в том числе:

  • 4048 участника конгрессной части Форума
  • 4212 посетителя выставки
  • 559 стендист
  • 205 представителей СМИ освещали работу Форума

Критика нанотехнологий

Критика нанотехнологий сосредоточилась в основном в двух направлениях:

См. также

  • Spinhenge@home - проект распределённых вычислений в области нанотехнологий (Молекулярные магниты: Наноуровень управления магнетизмом)
  • Изучение влияния нанотехнологии (англ. )

Литература

  • Алфимова М.М. Занимательные нанотехнологии. - М .: Бином, 2011. - С. 96.
  • Головин Ю.И. Наномир без формул. - М .: Бином, 2012. - С. 543.
  • Гудилин Е.А. и др. Богатство наномира. Фоторепортаж из глубин вещества. - М .: Бином, 2009. - С. 176.
  • Деффейс К., Деффейс С. Удивительные наноструктуры / пер. с англ.. - М .: Бином, 2011. - С. 206.
  • К. Жоаким, Л. Плевер. Нанонауки. Невидимая революция. - М.: КоЛибри, 2009. Глава из книги
  • Малинецкий Г. Г. Нанотехнологии. От алхимии к химии и дальше// Интеграл. 2007, № 5, с.4-5.
  • Марк Ратнер, Даниэль Ратнер Нанотехнология: простое объяснение очередной гениальной идеи = Nanotechnology: A Gentle Introduction to the Next Big Idea. - М .: «Вильямс», 2006. - С. 240. - ISBN 0-13-101400-5
  • Хартманн У. Очарование нанотехнологии / пер. с нем. – 2-е изд.. - М .: Бином, 2010. - С. 173.
  • Эрлих Г. Малые объекты – большие идеи. Широкий взгляд на нанотехнологии.. - М .: Бином, 2011. - С. 254.

Природа непрерывна, а любое определение требует установления каких-то границ. Поэтому формулировка определений - достаточно неблагодарное занятие. Тем не менее это надо делать, так как четкое определение позволяет отделить одно явление от другого, выявить существенные различия между ними и таким образом глубже понять сами явления. Поэтому целью этого эссе является попытка разобраться в значении модных сегодня терминов c приставкой «нано» (от греческого слова «карлик») - «нанонаука», «нанотехнология», «нанообъект», «наноматериал».

Несмотря на то что эти вопросы с той или иной степенью глубины неоднократно обсуждались в специальной и научно-популярной литературе, анализ литературы и личный опыт показывают, что до сих пор в широких научных кругах, не говоря уже о ненаучных, нет четкого понимания как самой проблемы, так и определений. Именно поэтому мы постараемся дать определения всем перечисленным выше терминам, акцентируя внимание читателя на значении базового понятия «нанообъект». Мы приглашаем читателя к совместному размышлению о том, существует ли нечто, принципиально отличающее нанообъекты от их более крупных и более мелких «собратьев», «населяющих» окружающий нас мир. Более того, мы предлагаем ему самому принять участие в серии мысленных экспериментов по конструированию наноструктур и их синтезу. Мы также попытаемся продемонстрировать, что именно в наноразмерном интервале происходит изменение характера физических и химических взаимодействий, причем происходит это именно на том же участке размерной шкалы, где проходит граница между живой и неживой природой.

Но сначала - откуда всё это появилось, почему была введена приставка «нано», что является определяющим при отнесении материалов к наноструктурам, почему нанонаука и нанотехнологии выделяются в отдельные области, что в этом выделении относится (и относится ли) к действительно научным основам?

Что такое «нано» и откуда всё началось

Это приставка, которая показывает, что исходная величина должна быть уменьшена в миллиард раз, т. е. поделена на единицу с девятью нулями - 1 000 000 000. Например, 1 нанометр - это миллиардная часть метра (1 нм = 10 –9 м). Чтобы представить себе, насколько мал 1 нм, выполним следующий мысленный эксперимент (рис. 1). Если мы уменьшим диаметр нашей планеты (12 750 км = 12,75 × 10 6 м ≈ 10 7 м) в 100 миллионов (10 8) раз, то получим примерно 10 –1 м. Это размер, приблизительно равный диаметру футбольного мяча (стандартный диаметр футбольного мяча - 22 см, но в наших масштабах такая разница несущественна; для нас 2,2 × 10 –1 м ≈ 10 –1 м). Теперь уменьшим диаметр футбольного мяча в те же 100 миллионов (10 8) раз, и вот только теперь получим размер наночастицы, равный 1 нм (приблизительно диаметр углеродной молекулы фуллерена C 60 , по своей форме похожего на футбольный мяч - см. рис. 1).

Примечательно, что приставка «нано» использовалась в научной литературе довольно давно, но для обозначения далеко не нанообъектов. В частности для объектов, размер которых в миллиарды раз превышает 1 нм - в терминологии динозавров. Нанотиранозаврами (nanotyrranus ) и нанозаврами (nanosaurus ) называются карликовые динозавры, размеры которых составляют соответственно 5 и 1,3 м. Но они действительно «карлики» по сравнению с другими динозаврами, размеры которых превышают 10 м (до 50 м), а вес может достигать 30–40 т и более. Этот пример подчеркивает, что сама по себе приставка «нано» не несет физического смысла, а лишь указывает на масштаб.

Но теперь с помощью этой приставки обозначают новую эру в развитии технологий, называемых иногда четвертой промышленной революцией, - эру нанотехнологий.

Очень часто считается, что начало нанотехнологической эре положил в 1959 г. Ричард Фейнман в лекции "There"s Plenty of Room at the Bottom " («Там внизу - много места»). Основной постулат этой лекции заключался в том, что с точки зрения фундаментальных законов физики автор не видит никаких препятствий к работе на молекулярном и атомном уровнях, манипулировании отдельными атомами или молекулами. Фейнман говорил, что с помощью определенных устройств можно сделать еще меньшие по размеру устройства, которые в свою очередь способны сделать еще меньшие устройства, и так далее вплоть до атомного уровня, т. е. при наличии соответствующих технологий можно манипулировать отдельными атомами.

Справедливости ради, однако, следует отметить, что Фейнман не первый это придумал. В частности, идея создания последовательно уменьшающихся в размере манипуляторов была высказана еще в 1931 г. писателем Борисом Житковым в его фантастическом рассказе «Микроруки». Не можем удержаться и не привести небольшие цитаты из этого рассказа, чтобы дать читателю самому по достоинству оценить прозрение писателя:

«Я долго ломал голову и вот к чему пришел: я сделаю маленькие руки, точную копию моих - пусть они будут хоть в двадцать, тридцать раз меньше, но на них будут гибкие пальцы, как мои, они будут сжиматься в кулак, разгибаться, становиться в те же положения, что и мои живые руки. И я их сделал...
Но мне вдруг ударила в голову мысль: а ведь я могу сделать микроруки к моим маленьким рукам. Я могу для них сделать такие же перчатки, как я сделал для своих живых рук, такой же системой соединить их с ручками в десять раз меньше моих микрорук, и тогда... у меня будут настоящие микроруки, уже в двести раз они будут мельчить мои движения. Этими руками я ворвусь в такую мелкоту жизни, которую только видели, но где еще никто не распоряжался своими руками. И я взялся за работу...
Я хотел сделать истинные микроруки, такие, которыми я мог бы хватать частицы вещества, из которых создана материя, те невообразимо мелкие частицы, которые видны только в ультрамикроскоп. Я хотел пробраться в ту область, где ум человеческий теряет всякое представление о размерах - кажется, что уж нет никаких размеров, до того всё невообразимо мелко».

Но дело не только в литературных предсказаниях. То, что теперь называют нанообъектами, нанотехнологиями, если угодно, человек давно использовал в своей жизни. Один из наиболее ярких примеров (в прямом и переносном смыслах) - это разноцветные стекла. Например, созданный еще IV веке н. э. кубок Ликурга, хранящийся в Британском музее, при освещении снаружи - зеленый, но если освещать его изнутри - то он пурпурно-красный. Как показали недавние исследования с помощью электронной микроскопии, этот необычный эффект обусловлен наличием в стекле наноразмерных частиц золота и серебра. Поэтому можно смело утверждать, что кубок Ликурга сделан из нанокомпозитного материала.

Как выясняется теперь, в Средние века металлическую нанопыль часто добавляли в стекло для изготовления витражей. Вариации окраски стекол зависят от различий добавляемых частиц - природы используемого металла и размера его частиц. Недавно было установлено, что эти стекла обладают еще и бактерицидными свойствами, т. е. не только дают красивую игру света в помещении, но и дезинфицируют среду.

Если рассматривать историю развития науки в историческом плане, то можно выделить, с одной стороны, общий вектор - проникновение естественных наук «вглубь» материи. Движение по этому вектору определяется развитием средств наблюдения. Сначала люди изучали обычный мир, для наблюдения которого не надо было особых приборов. При наблюдениях на этом уровне заложены основы биологии (классификация мира живого, К. Линней и др.), была создана теория эволюции (Ч. Дарвин, 1859 г.). Когда появился телескоп, люди смогли проводить астрономические наблюдения (Г. Галилей, 1609 г.). Результатом этого явились закон Всемирного тяготения и классическая механика (И. Ньютон, 1642–1727 гг.). Когда появился микроскоп Левенгука (1674 г.), люди проникли в микромир (размерный интервал 1 мм - 0,1 мм). Сначала это было только созерцание мелких, не видимых глазом организмов. Лишь в конце XIX века Л. Пастер первым выяснил природу и функции микроорганизмов. Примерно в это же время (конец XIX - начало XX века) происходила революция в физике. Ученые стали проникать внутрь атома, изучать его строение. Опять-таки это было связано с появлением новых методов и инструментов, в качестве которых стали применять мельчайшие частицы вещества. В 1909 г. используя альфа-частицы (ядра гелия, имеющие размер порядка 10 –13 м) Резерфорду удалось «увидеть» ядро атома золота. Созданная на основе этих опытов планетарная модель атома Бора-Резерфорда дает наглядный образ огромности «свободного» места в атоме, вполне сравнимого с космической пустотой Солнечной системы. Именно пустоты таких порядков имел в виду Фейнман в своей лекции. При помощи тех же α-частиц в 1919 г. Резерфордом была осуществлена первая ядерная реакция по превращению азота в кислород. Так физики вошли в пико- и фемторазмерные интервалы , и понимание строения материи на атомном и субатомном уровнях привело в первой половине прошлого века к созданию квантовой механики.

Мир потерянных величин

Исторически случилось так, что на размерной шкале (рис. 2) были «перекрыты» практически все размерные области исследований, кроме области наноразмеров. Однако мир не без прозорливых людей. Еще в начале XX века В. Оствальд опубликовал книгу «Мир обойденных величин», в которой шла речь о новой в то время области химии - коллоидной химии, которая и имела дело именно с частицами нанометровых размеров (хотя тогда еще этот термин не употреблялся). Уже в этой книге он отмечал, что дробление материи в какой-то момент приводит к новым свойствам, что от размера частицы зависят свойства и всего материала.

В начале ХХ века еще не умели «видеть» частицы такого размера, так как они лежат ниже пределов разрешимости светового микроскопа. Поэтому не случайно одной из начальных вех появления нанотехнологий считается изобретение М. Кноллем и Э. Руска в 1931 г. электронного микроскопа. Только после этого человечество смогло «видеть» объекты субмикронных и нанометровых размеров. И тогда всё становится на свои места - основной критерий, по которому человечество принимает (или не принимает) какие-либо новые факты и явления, выражен в словах Фомы неверующего: «Пока не увижу, не поверю».

Следующий шаг был сделан в 1981 г. - Г. Бинниг и Г. Рорер создали сканирующий туннельный микроскоп, что дало возможность не только получать изображения отдельных атомов, но и манипулировать ими. То есть была создана технология, о которой говорил в своей лекции Р. Фейнман. Вот именно тогда и наступила эра нанотехнологий.

Отметим, что и здесь мы опять имеем дело с одной и той же историей. Опять потому, что для человечества вообще свойственно не обращать внимания на то, что хоть немного, но обгоняет свое время. Вот и на примере нанотехнологий выясняется, что ничего нового не открыли, просто стали лучше понимать то, что происходит вокруг, то, что даже в древности люди уже делали, пусть и неосознанно, вернее, осознанно (знали, что хотели получить), но не понимая физики и химии явления. Другой вопрос, что наличие технологии еще далеко не означает понимания сути процесса. Сталь умели варить давно, но понимание физических и химических основ сталеварения пришло значительно позже. Тут можно вспомнить, что секрет дамасской стали не открыт до сих пор. Здесь уже другая ипостась - знаем, что надо получить, но не знаем, как. Так что взаимоотношения науки и технологии далеко не всегда просты.

Кто же первым занялся наноматериалами в их современном понимании? В 1981 г. американский ученый Г. Глейтер впервые использовал определение «нанокристаллический». Он сформулировал концепцию создания наноматериалов и развил ее в серии работ 1981–1986 гг., ввел термины «нанокристаллические», «наноструктурные», «нанофазные» и «нанокомпозитные» материалы. Главный акцент в этих работах был сделан на решающей роли многочисленных поверхностей раздела в наноматериалах как основе для изменения свойств твердых тел.

Одним из важнейших событий в истории нанотехнологии и развития идеологии наночастиц явилось также открытие в середине 80-х - начале 90-х годов ХХ века наноструктур углерода - фуллеренов и углеродных нанотрубок, а также открытие уже в XXI веке способа получения графена.

Но вернемся к определениям.

Первые определения: всё очень просто

Сначала всё было очень просто. В 2000 г. президент США Б. Клинтон подписал документ «National Nanotechnology Initiative » («Национальная нанотехнологическая инициатива»), в котором приведено следующее определение: к нанотехнологиям относятся создание технологий и исследования на атомном, молекулярном и макромолекулярном уровнях в пределах примерно от 1 до 100 нм для понимания фундаментальных основ явлений и свойств материалов на уровне наноразмеров, а также создание и использование структур, оборудования и систем, обладающих новыми свойствами и функциями, определяемыми их размерами.

В 2003 г. правительство Великобритании обратилось в Royal Society и Royal Academy of Engineering с просьбой высказать свое мнение о необходимости развития нанотехнологий, оценить преимущества и проблемы, которые может вызвать их развитие. Такой доклад под названием «Nanoscience and nanotechnologies: opportunities and uncertainties » появился в июле 2004 г., и в нем, насколько нам известно, впервые были даны отдельно определения нанонауки и нанотехнологий:

Нанонаука - это исследование явлений и объектов на атомарном, молекулярном и макромолекулярном уровнях, характеристики которых существенно отличаются от свойств их макроаналогов.
Нанотехнологии - это конструирование, характеристика, производство и применение структур, приборов и систем, свойства которых определяются их формой и размером на нанометровом уровне.

Таким образом, под термином «нанотехнология» понимается совокупность технологических приемов, позволяющая создавать нанообъекты и/или манипулировать ими. Остается только дать определение нанообъектам. Но вот это, оказывается, не так просто, поэтому бОльшая часть статьи посвящена именно этому определению.

Для начала приведем формальное определение, наиболее широко используемое в настоящее время:

Нанообъектами (наночастицами ) называются объекты (частицы) с характерным размером в 1–100 нанометров хотя бы по одному измерению.

Вроде бы всё хорошо и понятно, неясно только, почему дано столь жесткое определение нижнего и верхнего пределов в 1 и 100 нм? Похоже, что выбрано это волюнтаристски, особенно подозрительно назначение верхнего предела. Почему не 70 или 150 нм? Ведь, учитывая всё многообразие нанообъектов в природе, границы наноучастка размерной шкалы могут и должны быть существенно размыты. И вообще в природе проведение любых точных границ невозможно - одни объекты плавно перетекают в другие, и происходит это в определенном интервале, а не в точке.

Прежде чем говорить о границах, попробуем понять, какой физический смысл содержится в понятии «нанообъект», почему его надо выделять отдельной дефиницией?

Как уже отмечалось выше, только в конце XX века начало появляться (вернее, утверждаться в умах) понимание того, что наноразмерный интервал строения материи всё-таки имеет свои особенности, что на этом уровне вещество обладает иными свойствами, которые не проявляются в макромире. Очень трудно переводить некоторые английские термины на русский язык, но в английском есть термин «bulk material », что приблизительно можно перевести как «большое количество вещества», «объемное вещество», «сплошная среда». Так вот некоторые свойства «bulk materials » при уменьшении размера составляющих его частиц могут начать изменяться при достижении определенного размера. В этом случае говорят, что происходит переход к наносостоянию вещества, наноматериалам.

А происходит это потому, что при уменьшении размера частиц доля атомов, расположенных на их поверхности, и их вклад в свойства объекта становятся существенными и растут с дальнейшим уменьшением размеров (рис. 3).

Но почему увеличение доли поверхностных атомов существенно влияет на свойства частиц?

Так называемые поверхностные явления известны давно - это поверхностное натяжение, капиллярные явления, поверхностная активность, смачивание, адсорбция, адгезия и др. Вся совокупность этих явлений обусловлена тем, что силы взаимодействия между частицами, составляющими тело, не скомпенсированы на его поверхности (рис. 4). Другими словами, атомы на поверхности (кристалла или жидкости - это не важно) находятся в особых условиях. Например, в кристаллах силы, заставляющие их находиться в узлах кристаллической решетки, действуют на них только снизу. Поэтому свойства этих «поверхностных» атомов отличаются от свойств этих же атомов в объеме.

Так как в нанообъектах число поверхностных атомов резко возрастает (рис. 3), то их вклад в свойства нанообъекта становится определяющим и растет с дальнейшим уменьшением размера объекта. Именно это и является одной из причин проявления новых свойств на наноуровне.

Другой причиной обсуждаемого изменения свойств является то, что на этом размерном уровне начинает уже проявляться действие законов квантовой механики, т. е. уровень наноразмеров - это уровень перехода, именно перехода, от царствования классической механики к царствованию механики квантовой. А как хорошо известно, самое непредсказуемое - это именно переходные состояния.

К середине XX века люди научились работать как с массой атомов, так и с одним атомом.

Впоследствии стало очевидно, что «маленькая кучка атомов» - это что-то иное, не совсем похожее ни на массу атомов, ни на отдельный атом.

Впервые, вероятно, ученые и технологи вплотную столкнулись с этой проблемой в физике полупроводников. В своем стремлении к миниатюризации они дошли до таких размеров частиц (несколько десятков нанометров и менее), при которых их оптические и электронные свойства стали резко отличаться от таковых для частиц «обычных» размеров. Именно тогда стало окончательно понятно, что шкала «наноразмеров» - это особая область, отличная от области существования макрочастиц или сплошных сред.

Поэтому в приведенных выше определениях нанонауки и нанотехнологий наиболее существенным является указание на то, что «настоящее нано» начинается с момента появления новых свойств веществ, связанных с переходом к этим масштабам и отличающихся от свойств объемных материалов. То есть существеннейшим и важнейшим качеством наночастиц, основным отличием их от микро- и макрочастиц является появление у них принципиально новых свойств, не проявляющихся при других размерах. Мы уже приводили литературные примеры, используем этот прием еще раз для того, чтобы наглядно показать и подчеркнуть различия между макро-, микро- и нанообъектами.

Вернемся к литературным примерам. Часто в качестве «раннего» нанотехнолога упоминается герой повести Лескова Левша. Однако это неправильно. Основное достижение Левши - это то, что он выковал маленькие гвозди [«я мельче этих подковок работал: я гвоздики выковывал, которыми подковки забиты, там уже никакой мелкоскоп взять не может »]. Но эти гвозди, хоть и очень маленькие, остались гвоздями, не потеряли своей основной функции - удерживать подкову. Так что пример с Левшой - это пример миниатюризации (если угодно, микроминиатюризации), т. е. уменьшения размеров предмета без изменения его функциональных и других свойств.

А вот уже упоминавшийся рассказ Б. Житкова описывает как раз именно изменение свойств:

«Мне нужно было вытянуть тонкую проволоку - то есть той толщины, какая для моих живых рук была бы как волос. Я работал и глядел в микроскоп, как протягивали медь микроруки. Вот тоньше, тоньше - еще осталось протянуть пять раз - и тут проволока рвалась. Даже не рвалась - она рассыпалась, как сделанная из глины. Рассыпалась в мелкий песок. Это знаменитая своей тягучестью красная медь».

Отметим, что в Wikipedia в статье про нанотехнологии как раз увеличение жесткости меди приводится в качестве одного из примеров изменения свойств при уменьшении размеров. (Интересно, откуда узнал про это Б. Житков в 1931 г.?)

Нанобъекты: квантовые плоскости, нити и точки. Наноструктуры углерода

В конце XX века окончательно стало очевидно существование определенной области размеров частиц вещества - область наноразмеров. Физики, уточняя определение нанообъектов, утверждают, что верхний предел наноучастка размерной шкалы совпадает, по всей видимости, с размером проявления так называемых низкоразмерных эффектов или эффекта понижения размерности.

Попытаемся сделать обратный перевод последнего утверждения с языка физиков на общечеловеческий язык.

Мы живем в трехмерном мире. Все окружающие нас реальные предметы имеют те или иные размеры во всех трех измерениях, или, как говорят физики, обладают размерностью 3.

Проведем следующий мысленный эксперимент. Выберем трехмерный, объемный, образец какого-нибудь материала, лучше всего - однородный кристалл. Пусть это будет кубик с длиной ребра в 1 см. Этот образец обладает определенными физическими свойствами, не зависящими от его размеров. Вблизи внешней поверхности нашего образца свойства могут отличаться от таковых в объеме. Однако относительная доля поверхностных атомов мала, и поэтому вкладом поверхностного изменения свойств можно пренебречь (именно это требование означает на языке физиков, что образец объемный ). Теперь разделим кубик пополам - два его характерных размера останутся прежними, а один, пусть это будет высота d , уменьшится в 2 раза. Что произойдет со свойствами образца? Они не изменятся. Повторим этот эксперимент еще раз и измерим интересующее нас свойство. Мы получим тот же результат. Неоднократно повторяя эксперимент, мы наконец дойдем до некоторого критического размера d *, ниже которого измеряемое нами свойство начнет зависеть от размера d . Почему? При d ≤ d * доля вклада поверхностных атомов в свойства становится существенной и будет продолжать расти с дальнейшим уменьшением d.

Физики говорят что при d ≤ d * в нашем образце наблюдается квантово-размерный эффект в одном измерении. Для них наш образец не является больше трехмерным (что для любого обычного человека звучит абсурдно, ведь наше d хоть и мало, но не равно нулю!), его размерность понижена до двух. А сам образец называется квантовой плоскостью, или квантовой ямой, по аналогии с часто употребляемым в физике термином «потенциальная яма».

Если в неком образце d ≤ d * в двух измерениях, то его называют одномерным квантовым объектом, или квантовой нитью, или квантовым проводом. У нуль-мерных объектов, или квантовых точек, d ≤ d * во всех трех измерениях.

Естественно, что критический размер d * не является постоянной величиной для разных материалов и даже для одного материала может существенно варьироваться в зависимости от того, какое из свойств мы измеряли в нашем эксперименте, или, говоря другими словами, какая из критических размерных характеристик физических явлений определяет данное свойство (свободный пробег электронов фононов, длина волны де Бройля, длина диффузии, глубина проникновения внешнего электромагнитного поля или акустических волн и пр.).

Однако оказывается, что при всём многообразии явлений, происходящих в органических и неорганических материалах в живой и неживой природе, величина d * лежит примерно в интервале 1–100 нм. Таким образом, «нанообъект» («наноструктура», «наночастица») - это просто другой вариант термина «квантово-размерная структура». Это объект, у которого d ≤ d * по крайней мере в одном измерении. Это частицы пониженной размерности, частицы с повышенной долей поверхностных атомов. А значит, классифицировать их логичнее всего по степени снижения размерности: 2D - квантовые плоскости, 1D - квантовые нити, 0D - квантовые точки.

Весь спектр сниженных размерностей можно легко объяснить и главное - экспериментально наблюдать на примере углеродных наночастиц.

Открытие наноструктур углерода явилось очень важной вехой в развитии концепции наночастиц.

Углерод - всего лишь одиннадцатый по распространенности в природе элемент, однако благодаря уникальной способности его атомов соединяться друг с другом и образовывать длинные молекулы, включающие в качестве заместителей и другие элементы, возникло громадное множество органических соединений, да и сама Жизнь. Но, даже соединяясь только сам с собой, углерод способен порождать большой набор различных структур с весьма разнообразными свойствами - так называемых аллотропных модификаций. Алмаз, например, является эталоном прозрачности и твердости, диэлектриком и теплоизолятором. Однако графит - идеальный «поглотитель» света, сверхмягкий материал (в определенном направлении), один из лучших проводников тепла и электричества (в плоскости, перпендикулярной вышеназванному направлению). А ведь оба этих материала состоят только из атомов углерода!

Но всё это на макроуровне. А переход на наноуровень открывает новые уникальные свойства углерода. Оказалось, что «любовь» атомов углерода друг к другу настолько велика, что они могут без участия других элементов образовывать целый набор наноструктур, отличающихся друг от друга, в том числе и размерностью. В их число входят фуллерены, графен, нанотрубки, наноконы и т. п. (рис. 5).

Отметим при этом, что наноструктуры углерода можно назвать «истинными» наночастицами, так как в них, как хорошо видно на рис. 5, все составляющие их атомы лежат на поверхности.

Но вернемся к самому графиту. Итак, графит - самая распространенная и термодинамически стабильная модификация элементарного углерода с трехмерной кристаллической структурой, состоящей из параллельных атомных слоев, каждый из которых представляет собой плотную упаковку шестиугольников (рис. 6). В вершинах любого такого шестиугольника расположен атом углерода, а стороны шестиугольников графически отражают прочные ковалентные связи между атомами углерода, длина которых составляет 0,142 нм. А вот расстояние между слоями достаточно велико (0,334 нм), и поэтому связь между слоями достаточно слабая (в этом случае говорят о ван-дер-ваальсовом взаимодействии ).

Такая кристаллическая структура и объясняет особенности физических свойств графита. Во-первых, низкую твердость и способность легко расслаиваться на мельчайшие чешуйки. Так, например, пишут грифели карандашей, графитовые чешуйки которых, отслаиваясь, остаются на бумаге. Во-вторых, уже упоминавшуюся ярко выраженную анизотропию физических свойств графита и прежде всего его электрической проводимости и теплопроводности.

Любой из слоев трехмерной структуры графита можно рассматривать как гигантскую плоскостную структуру, имеющую размерность 2D. Такая двумерная структура, построенная только из атомов углерода, получила название «графен». Получить такую структуру «относительно» легко, во всяком случае, в мысленном эксперименте. Возьмем графитовый карандашный грифель и начнем писать. Высота грифеля d будет уменьшаться. Если хватит терпения, то в какой-то момент величина d сравняется с d *, и мы получим квантовую плоскость (2D).

Долгое время проблема стабильности плоских двумерных структур в свободном состоянии (без подложки) в общем и графена в частности, а также электронные свойства графена были предметом только теоретических исследований. Совсем недавно, в 2004 г., группой физиков во главе с А. Геймом и К. Новосёловым были получены первые образцы графена, что произвело революцию в этой области, так как такие двумерные структуры оказались, в частности, способными проявлять поразительные электронные свойства, качественно отличающиеся от всех прежде наблюдаемых. Поэтому сегодня сотни экспериментальных групп и исследуют электронные свойства графена.

Если свернуть графеновый слой, моноатомный по толщине, в цилиндр таким образом, чтобы гексагональная сетка атомов углерода замкнулась без швов, то мы «сконструируем» одностенную углеродную нанотрубку. Экспериментально можно получать одностенные нанотрубки диаметром от 0,43 до 5 нм. Характерными особенностями геометрии нанотрубок являются рекордные значения удельной поверхности (в среднем ~1600 м 2 /г для одностенных трубок) и отношения длины к диаметру (100 000 и выше). Таким образом, нанотрубки представляют собой 1D нанообъект - квантовые нити.

В экспериментах наблюдались также и многостенные углеродные нанотрубки (рис. 7). Они состоят из коаксиальных цилиндров, вставленных один в другой, стенки которых находятся на расстоянии (около 3,5 Å), близком к межплоскостному расстоянию в графите (0,334 нм). Количество стенок может варьироваться от 2 до 50.

Если же поместить кусок графита в атмосферу инертного газа (гелия или аргона) и затем осветить лучом мощного импульсного лазера или концентрированного солнечного света, то можно испарить материал нашей графитовой мишени (заметим, что для этого температура поверхности мишени должна быть как минимум 2700°C). В таких условиях над поверхностью мишени образуется плазма, состоящая из индивидуальных атомов углерода, которые увлекаются потоком холодного газа, что приводит к охлаждению плазмы и образованию кластеров углерода. Так вот, оказывается, что при определенных условиях кластеризации атомы углерода замыкаются с образованием каркасной сферической молекулы C 60 размерностью 0D (т. е. квантовая точка), уже показанной на рис. 1.

Такое самопроизвольное образование молекулы C 60 в углеродной плазме было обнаружено в совместном эксперименте Г. Крото, Р. Кёрла и Р. Смоли, проведенном в течение десяти дней в сентябре 1985 г. Отошлем любознательного читателя к книге Е. А. Каца «Фуллерены, углеродные нанотрубки и нанокластеры: Родословная форм и идей», подробно описывающей увлекательную историю этого открытия и события, ему предшествующие (с краткими экскурсами в историю науки вплоть до эпохи Возрождения и даже Античности), а также объясняющей мотивацию странного на первый взгляд (и только на первый взгляд) названия новой молекулы - бакминстерфуллерен - в честь архитектора Р. Бакминстера Фуллера (см. также книгу [Пиотровский, Киселев, 2006]).

Впоследствии было обнаружено, что существует целое семейство углеродных молекул - фуллеренов - в форме выпуклых многогранников, состоящих только из шестиугольных и пятиугольных граней (рис. 8).

Именно открытие фуллеренов явилось своеобразным волшебным «золотым ключиком» в новый мир нанометровых структур из чистого углерода, вызвало взрыв работ в этой области. К настоящему времени обнаружено большое количество различных углеродных кластеров с фантастическим (в прямом смысле этого слова!) разнообразием структуры и свойств.

Но вернемся к наноматериалам.

Наноматериалами называются материалы, структурными единицами которых являются нанообъекты (наночастицы). Образно говоря, здание наноматериала сложено из кирпичей-нанообъектов. Поэтому классифицировать наноматериалы продуктивнее всего по размерности как самого образца наноматериала (внешних размеров матрицы), так и по размерности составляющих его нанообъектов. Наиболее подробная классификация такого рода приведена в работе . Представленные в этой работе 36 классов наноструктур описывают всё многообразие наноматериалов, некоторые из которых (как указанные выше фуллерены или углеродный наногорох) уже успешно синтезированы, а некоторые всё еще ждут своей экспериментальной реализации.

Почему всё не так просто

Итак, мы можем строго определить интересующие нас понятия «нанонаука», «нанотехнология» и «наноматериалы» только в том случае, если понимаем, что такое «нанобъект».

«Нанообъект» же, в свою очередь, имеет два определения. Первое, более простое (технологическое): это объекты (частицы) с характерным размером приблизительно в 1–100 нанометров хотя бы по одному измерению. Второе определение, более научное, физическое: объект с пониженной размерностью (у которого d ≤ d * по крайней мере в одном измерении).

Других определений, насколько нам известно, не имеется.

Не может не бросаться в глаза, однако, тот факт, что и научное определение обладает серьезным недостатком. А именно: в нем, в отличие от технологического, определяется только верхний предел наноразмеров. Должен ли существовать нижний предел? По нашему мнению, конечно, должен. Первая причина существования нижнего предела непосредственно вытекает из физической сущности научного определения нанообъекта, так как большинство обсуждавшихся выше эффектов понижения размерности являются эффектами квантового ограничения, или явлениями резонансной природы. Иными словами, они наблюдаются при совпадении характерных длин эффекта и размеров объекта, т. е. не только для d d *, что уже обсуждалось, но в то же время только если размер d превышает некий нижний предел d ** (d ** ≤ d d *). При этом очевидно, что величина d* может варьироваться для разных явлений, но должна превышать размеры атомов.

Проиллюстрируем сказанное на примере соединений углерода. Полициклические ароматические углеводороды (ПАУ) типа нафталина, бензпирена, хризена и т. п. являются формально аналогами графена. Более того, самый большой из известных ПАУ имеет общую формулу C 222 H 44 и содержит 10 бензольных колец по диагонали. Однако они не обладают теми удивительными свойствами, которыми обладает графен, и их нельзя рассматривать как наночастицы. То же самое относится и к наноалмазам: до ~ 4–5 нм это наноалмазы, но близко к этим границам, и даже заходя за них, подходят высшие диамандоиды (аналоги адамантана, имеющие конденсированные алмазные ячейки в качестве основы структуры).

Итак: если в пределе размер объекта по всем трем измерениям будет равен размеру атома, то, например, кристалл, сложенный из таких 0-мерных объектов будет не наноматериалом, а обычным атомарным кристаллом. Это очевидно. Как очевиден и тот факт, что количество атомов в нанообъекте должно всё-таки превосходить единицу. Если у нанобъекта все три значения d меньше, чем d**, он престает им быть. Такой объект надо описывать на языке описания индивидуальных атомов.

А если не все три размера, а только один, например? Остается ли такой объект нанообъектом? Конечно, да. Таким объектом является, например, уже не раз упоминавшийся графен. То, что характерный размер графена в одном измерении равен диаметру атома углерода, не лишает его свойств наноматериала. И свойства эти абсолютно уникальны. Были измерены проводимость, эффект Шубникова - де Гааза, квантовый эффект Холла в графеновых пленках атомарной толщины. Эксперименты подтвердили, что графен - полупроводник с нулевой шириной запрещенной зоны, при этом в точках соприкосновения валентной зоны и зоны проводимости энергетический спектр электронов и дырок линеен как функция волнового вектора. Такого рода спектром обладают частицы с нулевой эффективной массой, в частности фотоны, нейтрино, релятивистские частицы. Отличие фотонов и безмассовых носителей в графене состоит в том, что последние являются фермионами, и они заряжены. В настоящее время аналогов для этих безмассовых заряженных фермионов Дирака среди известных элементарных частиц нет. Сегодня графен представляет огромный интерес как для проверки множества теоретических предположений из областей квантовой электродинамики и теории относительности, так и для создания новых устройств наноэлектроники, в частности баллистического и одноэлектронного транзисторов.

Для нашей дискуссии весьма важно, что наиболее близким к понятию нанообъекта является размерный участок, на котором реализуются так называемые мезоскопические явления. Это минимальный размерный участок, для которого резонно говорить не о свойствах индивидуальных атомов или молекул, а о свойствах материала в целом (например, при определении температуры, плотности или проводимости материала). Мезоскопические размеры как раз попадают в интервал 1–100 нм. (Приставка «мезо-» происходит от греческого слова «средний», промежуточный - между атомарными и макроскопическими размерами.)

Всем известно, что психология занимается поведением индивидуумов, а социология - поведением больших групп людей. Так вот, отношения в группе из 3–4 человек можно по аналогии охарактеризовать как мезоявления. Точно так же, как уже упоминалось выше, маленькая кучка атомов - это что-то не похожее ни на «кучу» атомов, ни на отдельный атом.

Тут следует отметить еще одну важную особенность свойств нанообъектов. Несмотря на то, что в отличие от графена углеродные нанотрубки и фуллерены являются формально 1- и 0-мерными объектами соответственно, по существу это не совсем так. Вернее, так и не так одновременно. Дело в том, что нанотрубка - это тот же графеновый 2D одноатомный слой, свернутый в цилиндр. А фуллерен - это углеродный 2D слой одноатомной толщины, замкнутый по поверхности сферы. То есть свойства нанообъектов существенно зависят не только от их размеров, но и от топологических характеристик - попросту говоря, от их формы.

Итак, правильное научное определение нанообъекта должно быть следующим:

это объект, у которого хотя бы один из размеров ≤ d *, при этом хотя бы один из размеров превышает d**. Иными словами, объект достаточно велик, чтобы обладать макросвойствами вещества, но в то же время характеризуется пониженной размерностью, т. е. хотя бы по одному из измерений достаточно мал, чтобы значения этих свойств сильно отличались от соответствующих свойств макрообъектов из этого же вещества, существенно зависели от размеров и формы объекта. При этом точные значения размеров d * и d** могут варьироваться не только от вещества к веществу, но и для разных свойств одного и того же вещества.

То, что эти соображения отнюдь не являются схоластическими (типа «со скольких песчинок начинается куча?»), а имеют глубокий смысл для понимания единства науки и непрерывности окружающего нас мира, становится очевидным, если мы обратим свой взор на нанообъекты органического происхождения.

Нанообъекты органической природы - супрамолекулярные структуры

Выше мы рассматривали только неорганические относительно однородные материалы, и уже там всё было не так просто. Но на Земле есть колоссальное количество материи, которую не просто трудно, а нельзя назвать однородной. Речь идет о биологических структурах и вообще о Живой материи.

В «Национальной нанотехнологической инициативе» в качестве одной из причин особого интереса к области наноразмеров указывается:

так как системная организация материи на наноуровне является ключевой особенностью биологических систем, нанонаука и технология дадут возможность включать в клетки искусственные компоненты и ансамбли, создавая тем самым новые структурно организованные материалы на основе подражания методам самосборки в природе.

Попробуем теперь разобраться, какой смысл имеет понятие «наноразмер» в приложении к биологии, памятуя о том, что при переходе к этому размерному интервалу должны принципиально или резко изменяться свойства. Но сначала вспомним, что к нанообласти можно подойти двумя путями: «сверху вниз» (дробление) или «снизу вверх» (синтез). Так вот, движение «снизу вверх» для биологии представляет собой не что иное, как образование из отдельных молекул биологически активных комплексов.

Рассмотрим коротко химические связи, которые определяют строение и форму молекулы. Первой и самой сильной является ковалентная связь, характеризующаяся строгой направленностью (только от одного атома к другому) и определенной длиной, которая зависит от типа связи (одинарная, двойная, тройная и т. п.). Именно ковалентные связи между атомами определяют «первичную структуру» любой молекулы, т. е. какие атомы и в каком порядке связаны друг с другом.

Но существуют и другие типы связей, определяющие то, что называется вторичной структурой молекулы, ее форму. Это прежде всего водородная связь - связь между полярным атомом и атомом водорода. Она ближе всего к ковалентной связи, так как также характеризуется определенной длиной и направленностью. Однако эта связь слабая, ее энергия на порядок ниже энергии ковалентной связи. Остальные типы взаимодействий являются ненаправленными и характеризуются не длиной образуемых связей, а скоростью убывания энергии связи с увеличением расстояния между взаимодействующими атомами (дальнодействием). Ионная связь является дальнодействующим взаимодействием, ван-дер-ваальсовы взаимодействия являются короткодействующими. Так, если расстояние между двумя частицами увеличивается в r раз, то в случае ионной связи притяжение снизится до 1/r 2 от начального значения, в случае уже не раз упоминавшегося ван-дер-ваальсового взаимодействия - до 1/r 3 и более (до 1/r 12). Все эти взаимодействия в общем случае можно определить как межмолекулярные взаимодействия.

Рассмотрим теперь такое понятие, как «биологически активная молекула». Следует признать, что молекула вещества сама по себе представляет интерес только для химиков и физиков. Их интересует ее строение («первичная структура»), ее форма («вторичная структура»), такие макроскопические показатели, как, например, агрегатное состояние, растворимость, температуры плавления и кипения и т. п., и микроскопические (электронные эффекты и взаимное влияние атомов в данной молекуле, спектральные свойства как проявление этих взаимодействий). Другими словами, речь идет об изучении свойств, проявляемых в принципе одной молекулой. Напомним, что по определению молекула - это наименьшая частица вещества, несущая его химические свойства.

С точки же зрения биологии «изолированная» молекула (в данном случае не важно, одна это молекула или какое-то количество одинаковых молекул) не способна проявлять никаких биологических свойств. Этот тезис звучит достаточно парадоксально, но попробуем его обосновать.

Рассмотрим это на примере ферментов - белковых молекул, представляющих собой биохимические катализаторы. Например, фермент гемоглобин, обеспечивающий перенос кислорода в ткани, состоит из четырех белковых молекул (субъединиц) и одной так называемой простетической группы - гемма, содержащего атом железа, нековалентно связанного с белковыми субъединицами гемоглобина.

Основной, а точнее определяющий вклад во взаимодействие белковых субъединиц и гемма, взаимодействие, приводящее к образованию и устойчивости надмолекулярного комплекса, который и называется гемоглобином, вносят силы, именуемые иногда гидрофобными взаимодействиями, но представляющие собой силы межмолекулярного взаимодействия. Связи, образуемые этими силами, значительно слабее ковалентных. Но при комплементарном взаимодействии, когда две поверхности очень близко подходят друг к другу, число этих слабых связей велико, и поэтому общая энергия взаимодействия молекул достаточно высока и образующийся комплекс достаточно устойчив. Но пока не образовались эти связи между четырьмя субъединицами, пока не присоединилась (опять-таки за счет нековалентных связей) простетическая группа (гемм), ни при каких условиях отдельные части гемоглобина связывать кислород не могут и тем более не могут никуда его переносить. И, следовательно, данной биологической активностью не обладают. (Эти же самые рассуждения можно распространить и на все ферменты в целом.)

При этом сам процесс катализа подразумевает образование в ходе реакции комплекса из как минимум двух компонентов - самого катализатора и молекулы (молекул), называемых субстратом(ами), претерпевающей(их) какие-то химические превращения под действием катализатора. Другими словами, должен образоваться комплекс как минимум из двух молекул, т. е. супрамолекулярный (надмолекулярный) комплекс.

Идея комплементарного взаимодействия впервые была предложена Э. Фишером для объяснения взаимодействия лекарственных веществ с их мишенью в организме и названа взаимодействием «ключ к замку». Хотя лекарственные (и иные биологические вещества) далеко не во всех случаях представляют собой ферменты, но и они способны вызвать какой-либо биологический эффект только после взаимодействия с соответствующей биологической мишенью. А такое взаимодействие опять-таки есть не что иное, как образование супрамолекулярного комплекса.

Следовательно, проявление «обычными» молекулами принципиально новых свойств (в рассматриваемом случае - биологической активности) связано с образованием ими надмолекулярных (супрамолекулярных) комплексов с другими молекулами за счет сил межмолекулярного взаимодействия. Именно так устроено большинство ферментов и систем в организме (рецепторы, мембраны и т. п.), в том числе такие сложные структуры, которые иногда называются биологическими «машинами» (рибосомы, АТФаза и др.). Причем происходит это именно на уровне нанометровых размеров - от одного до нескольких десятков нанометров.

При дальнейшем усложнении и увеличении размеров (более 100 нм), т. е. при переходе на другой размерный уровень (микроуровень), возникают значительно более сложные системы, способные не только к самостоятельному существованию и взаимодействию (в частности, к обмену энергией) с окружающей их средой, но и к самовоспроизведению. То есть опять происходит изменение свойств всей системы - она становится настолько сложной, что уже способна к самовоспроизведению, возникает то, что мы называем живыми структурами.

Многие мыслители неоднократно пытались дать определение Жизни. Не вдаваясь в философские дискуссии, отметим, что, на наш взгляд, жизнь есть существование самовоспроизводящихся структур, а начинаются живые структуры с отдельной клетки. Жизнь есть микро- и макроскопический феномен, а вот основные процессы, обеспечивающие функционирование живых систем, протекают на уровне наноразмеров.

Функционирование живой клетки как интегрированного саморегулирующегося устройства с ярко выраженной структурной иерархией обеспечивается миниатюризацией на наноразмерном уровне. Очевидно, что миниатюризация на уровне наноразмеров является принципиальным атрибутом биохимии, а следовательно, эволюция жизни состоит из появления и интеграции различных форм наноструктурированных объектов. Именно наноразмерный участок структурной иерархии, ограниченный по размерам как сверху, так и снизу (!), является критичным для появления и способности к существованию клеток. То есть именно уровень наноразмеров представляет собой переход от уровня молекулярного к уровню Живого.

Однако из-за того что миниатюризация на уровне наноразмеров является принципиальным атрибутом биохимии, нельзя всё-таки рассматривать любые биохимические манипуляции как нанотехнологические - нанотехнологии предполагают всё-таки конструирование, а не банальное применение молекул и частиц.

Заключение

В начале статьи мы уже пытались как-то классифицировать объекты различных естественных наук по принципу характерных размеров исследуемых ими объектов. Вернемся к этому снова и, применив эту классификацию, получим, что атомная физика, изучающая взаимодействия внутри атома, - это субангстремные (фемто- и пико-) размеры.

«Обычные» неорганическая и органическая химия - это ангстремные размеры, уровень отдельных молекул или связей внутри кристаллов неорганических веществ. А вот биохимия - это уровень наноразмеров, уровень существования и функционирования супрамолекулярных структур, стабилизированных нековалентными межмолекулярными силами.

Но биохимические структуры еще относительно просты, и функционировать они могут относительно независимо (in vitro , если угодно). Дальнейшее усложнение, образование супрамолекулярными структурами сложных ансамблей - это есть переход к самовоспроизводящимся структурам, переход к Живому. И здесь уже на уровне клеток это микроразмеры, а на уровне организмов - макроразмеры. Это уже биология и физиология.

Наноуровень представляет собой переходную область от уровня молекулярного, образующего базис существования всего живого, состоящего из молекул, к уровню Живого, уровню существования самовоспроизводящихся структур, а наночастицы, представляющие собой супрамолекулярные структуры, стабилизированные силами межмолекулярного взаимодействия, представляют собой переходную форму от отдельных молекул к сложным функциональным системам. Это можно отразить схемой, подчеркивающей, в частности, и непрерывность Природы (рис. 9). В схеме мир наноразмеров расположен между атомно-молекулярным миром и миром Живого, состоящего из тех же атомов и молекул, но организованных в сложные самовоспроизводящиеся структуры, а переход из одного мира в другой определяется не только (и не столько) размерами структур, сколько их сложностью. Природа давно придумала и использует в живых системах супрамолекулярные структуры. Мы же далеко не всегда можем понять, а тем более повторить то, что Природа делает легко и непринужденно. Но нельзя ждать от нее милостей, надо у нее учиться.

Литература:
1) Вуль А.Я., Соколов В.И. Исследования наноугле-рода в России: от фуллеренов к нанотрубкам и нано-алмазам/ Российские нанотехнологии, 2007. Т. 3 (3–4).
2) Кац Е.А. Фуллерены, углеродные нанотрубки и нанокластеры: родословная форм и идей. - М.: ЛКИ, 2008.
3) Оствальд В. Мир обойденных величин. - М.: Изд-во товарищества «Мир», 1923.
4) Пиотровский Л.Б., Киселев О.И. Фуллерены в биологии. - Росток, СПб, 2006.
5) Ткачук В.А. Нанотехнологии и медицина // Российские нанотехнологии, 2009. Т. 4 (7–8).
6) Хобза П., Заградник Р. Межмолекулярные комплексы. - М.: Мир, 1989.
7) Mann S. Life as a nanoscale phenomenon. Angew. Chem. Int. Ed. 2008, 47, 5306–5320.
8) Pokropivny V.V., Skorokhod V.V. New dimensionality classifications of nanostructures // Physica E, 2008, v. 40, p. 2521–2525.

Нано - 10 –9 , пико - 10 –12 , фемто - 10 –15 .

Притом не только увидеть, но и потрогать. «Но он сказал им: если не увижу на руках Его ран от гвоздей, и не вложу перста моего в раны от гвоздей, и не вложу руки моей в ребра Его, не поверю» [Евангелие от Иоанна, глава 20, стих 24].

Например, об атомах говорил еще в 430 г. до н. э. Демокрит. Затем Дальтон в 1805 г. утверждал, что: 1) элементы состоят из атомов, 2) атомы одного элемента идентичны и отличаются от атомов другого элемента и 3) атомы не могут быть разрушены в химической реакции. Но лишь с конца XIX века стали развиваться теории строения атома, что и вызвало революцию в физике.

Понятие «нанотехнология» было введено в обиход в 1974 г. японцем Норио Танигучи. Долгое время термин не получал широкого распространения среди специалистов, работавших в связанных областях, так как Танигучи использовал понятие «нано» только для обозначения точности обработки поверхностей, например, в технологиях, позволяющих контролировать шероховатости поверхности материалов на уровне меньше микрометра и т. п.

Понятия «фуллерены», «углеродные нанотрубки» и «графен» будут подробно обсуждаться во второй части статьи.

Экспериментальной иллюстрацией этого утверждения является недавно опубликованная разработка технологических приемов получения графеновых листов путем «химического разрезания» и «разворачивания» углеродных нанотрубок.

Слово «микроскопические» употреблено здесь лишь потому, что так эти свойства назывались ранее, хотя речь в данном случае идет о свойствах, проявляемых молекулами и атомами, т. е. о пикоразмерном интервале.

Что, в частности, привело к возникновению точки зрения, что жизнь есть феномен нанометровых размеров [Mann , 2008], что, на наш взгляд, не совсем верно.

Курникова Мария

Скачать:

Предварительный просмотр:

АДМИНИСТРАЦИЯ ГОРОДА НИЖНЕГО НОВГОРОДА

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ЦЕНТР ОБРАЗОВАНИЯ МОСКОВСКОГО РАЙОНА

603079, Московское шоссе, 161, т. (факс) 279-03-11

Научное общество учащихся

Нанотехнологии и их применение

Выполнила: Курникова Мария,

Ученица 10 «А» класса

Научный руководитель:

Климкова Татьяна Юрьевна

Учитель физики

Нижний Новгород

2013 год

Стр.

Введение……………………………………………………………………….3

Глава 1. Понятие и развитие нанотехнологий………………………………5

1.1. Понятие нанотехнологий……………………………………………...5

1.2. История развития нанотехнологий…………………………………...8

1.3. Современный уровень развития нанотехнологий…………………..11

Глава 2. Применение нанотехнологий в различных отраслях…………….12

2.1. Наноэлектроника и нанофотоника……………………………………..13

2.2. Наноэнергетика………………………………………………………….14

2.3. Наномедицина…………………………………………………………...16

2.4. Нанобиотехнологии……………………………………………………..18

2.5. Нанокосметика…………………………………………………………..19

2.6. Нанотехнологии для легкой промышленности………………………..21

2.7. Нанотехнологии для обеспечения безопасности……………………...24

2.8. Нанотехнологии для сельского хозяйства и пищевой промышленности………………………………………………………………..26

Заключение…………………………………………………………………..27

Cписок использованных источников………………………………………28

Введение

В своей научной работе мы решили рассмотреть такую тему, как нанотехнологии и их применение. Выбранная тема не случайна: мы считаем, что проблема развития и внедрения нанотехнологий в производственный процесс различных отраслей хозяйства России является сейчас очень важной и актуальной.

За последние несколько лет короткое слово с большим потенциалом - «нано» быстро вошло в мировое сознание. Существует множество слухов и ошибочных мнений относительно нанотехнологии. «Нано»- это не только крошечные роботы, которые могут (или не могут) завоевать мир. По сути, это огромный шаг в науке.

Нанотехнология сейчас находится в начальной стадии развития, поскольку основные открытия, предсказываемые в этой области, пока не сделаны. Тем не менее, проводимые исследования уже дают практические результаты. Использование в нанотехнологии передовых научных результатов позволяет относить её к высоким технологиям.

Нанотехнология - следующий логический шаг развития электроники и других наукоёмких производств.

Цель научной работы заключается в комплексной характеристике нанотехнологий, с учетом специфики и всех особенностей данной области прикладной науки.

Объектом настоящего исследования является нанотехнология как область науки и техники, а предметом – особенности применения нанотехнологии в машиностроении.

К основным задачам работы относятся:

1. Определение понятия «нанотехнология».

2. Рассмотрение истории развития нанотехнологии в мире вообще и в России в частности.

3. Выяснение прикладного аспекта нанотехнологий, то есть особенностей применения в различных отраслях.

4. Анализ возможностей, способов и методов применения нанотехнологий в машиностроении (в мире и в России).

5. Выделение технологических особенностей применения нанотехнологий.

6. Указание и прогнозирование перспектив развития нанотехнологий в России.

В соответствии с поставленными задачами находится и структура научной работы. Материал изложен в двух основных главах:

Первая глава носит теоретический характер – то есть в целом знакомит с нанотехнологией: понятие, история развития, возможности применения.

Вторая глава посвящена вопросу применения нанотехнологий: значение, технологические особенности, приводится прогноз развития и выяснение перспектив нанотехнологий в России.

При подготовке работы для сбора необходимого материала (данных) были использованы различные информационные источники, но в основном это - экономические и научно-технические журналы, газеты, а также ресурсы сети Интернет.

В силу того, что нанотехнологии – сравнительная молодая область прикладной науки, учебной литературы по теме очень мало. Поэтому основной источник – материалы периодической печати и ресурсы глобальной информационной сети Интернет.

Глава 1. Понятие и развитие нанотехнологий

1.1. Понятие нанотехнологий

Любой материальный предмет - это всего лишь скопление атомов в пространстве. То, как эти атомы собраны в структуру, определяет, что это будет за предмет.

С. Лем

Английский термин «Nanotechnology» был предложен японским профессором Норио Танигучи в средине 70-х гг. прошлого века и использован в докладе «Об основных принципах нанотехнологии» (On the Basic Concept of Nanotechnology) на международной конференции в 1974 г., т. е. задолго до начала масштабных работ в этой области . По своему смыслу он заметно шире буквального русского перевода «нанотехнология», поскольку подразумевает большую совокупность знаний, подходов, приемов, конкретных процедур и их материализованные результаты – нанопродукцию.

Нанотехнология совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, имеющие принципиально новые качества и позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба. Данная технология подразумевает умение работать с такими объектами и создавать из них более крупные структуры, обладающие принципиально новой молекулярной организацией. В связи с этим возникли понятия нанонауки, нанотехнологии и наноинженериии (нанонаука занимается фундаментальными исследованиями свойств наноматериалов и явлений в нанометровом масштабе, нанотехнология – созданием наноструктур, наноинженерия – поиском эффективных методов их использования) (см. рис. 1).

Рисунок 1. Научные основы и объекты нанонауки и нанотехнологии

Наноматериалы материалы, содержащие структурные элементы, геометрические размеры которых хотя бы в одном измерении не превышают 100 нм, и обладающие качественно новыми свойствами, функциональными и эксплуатационными характеристиками;

Когда речь идет о развитии нанотехнологий, имеются в виду три направления:

· изготовление электронных схем (в том числе и объемных) с активными элементами, размерами сравнимыми с размерами молекул и атомов;

· разработка и изготовление наномашин, т.е. механизмов и роботов размером с молекулу;

· непосредственная манипуляция атомами и молекулами и сборка из них всего существующего.

Сегодня львиная доля производственных затрат человека идут, как это ни парадоксально, на производство отходов и загрязнение окружающей среды. Если же мы будем целенаправленно создавать необходимые нам материальные объекты, конструируя их из атомов и молекул, с помощью нанотехнологий, это приведет радикальному снижению материальных и энергетических затрат общества в целом.

Таким образом, нанотехнологии - это, во-первых, технологии атомарного конструирования, во-вторых, - принципиальный вызов существующей системе организации научных исследований, и, в-третьих, - философское понятие, возвращающее нас к целостному восприятию мира на новом уровне знаний.

1.2. История развития нанотехнологии

Отцом нанотехнологии можно считать греческого философа Демокрита. Примерно в 400 г. до н.э. он впервые использовал слово «атом», что в переводе с греческого означает «нераскалываемый», для описания самой малой частицы вещества.

Примером первого использования нанотехнологий можно назвать – изобретение в 1883 году фотопленки Джорджем Истмэном, который впоследствии основал известную компанию Kodak.

1932 г. Голландский профессор Фриц Цернике, Нобелевский лауреат 1953 г., изобрел фазово-контрастный микроскоп - вариант оптического микроскопа, улучшавший качество показа деталей изображения, и исследовал с его помощью живые клетки (ранее для этого приходилось применять красители, убивавшие живые ткани).

1939 г. Компания Siemens, в которой работал Руска, выпустила первый коммерческий электронный микроскоп с разрешающей способностью 10 нм.

Днем рождения нанотехнологий считается 29 декабря 1959 г. Профессор Калифорнийского технологического института Ричард Фейман выступил с лекцией на ежегодной встрече Американского физического общества в Калифорнийском технологическом институте. В этом докладе, названном «На дне много места», он выразил идею «управления и контроля материалов на микроскопическом уровне», подчеркивая, что речь идет не только о миниатюризации, но и о таких возможностях, как размещение всей Британской Энциклопедии на кончике булавки. По мнению Ричарда, достигнуть этого можно уменьшая обычные размеры в 25 000 раз без потери разрешения. Он предполагал, что используя подобные технологии, можно уместить все мировое собрание книг в одну брошюру. «Такое возможно, - сказал Фейман, - в силу сохранения объектами свойства размерности, несмотря на то, что речь идет об атомном уровне».

1966 г. Американский физик Рассел Янг, работавший в Национальном бюро стандартов, придумал пьезодвигатель, применяемый сегодня в сканирующих туннельных микроскопах и для позиционирования наноинструментов с точностью до 0,01 ангстрем (1 нм = 10 A°).

1968 г. Исполнительный вице-президент компании Bell Альфред Чо и сотрудник ее отделения по исследованиям полупроводников Джон Артур обосновали теоретическую возможность использования нанотехнологий в решении задач обработки поверхностей и достижения атомной точности при создании электронных приборов.

1982 г. В Цюрихском исследовательском центре IBM физики Герд Бинниг и Генрих Рорер (Нобелевские лауреаты 1986 г. вместе с Эрнстом Руской) создали сканирующий туннельный микроскоп (СТМ), позволяющий строить трехмерную картину расположения атомов на поверхностях проводящих материалов.

1985 г. Трое американских химиков: профессор Райсского университета Ричард Смэлли, а также Роберт Карл и Хэрольд Крото (Нобелевские лауреаты 1996 г.) открыли фуллерены - молекулы, состоящие из 60 атомов углерода, расположенных в форме сферы. Эти ученые также впервые сумели измерить объект размером 1 нм.

1986 г. Герд Бинниг разработал сканирующий атомно-силовой зондовый микроскоп, позволивший наконец визуализировать атомы любых материалов (не только проводящих), а также манипулировать ими.

1989 г. Ученые Дональд Эйглер и Эрхард Швецер из Калифорнийского научного центра IBM сумели выложить 35 атомами ксенона на кристалле никеля название своей компании.

1991 г. Японский профессор Сумио Лиджима, работавший в компании NEC, использовал фуллерены для создания углеродных трубок (или нанотрубок) диаметром 0,8 нм. На их основе в наше время выпускаются материалы в сто раз прочнее стали.

1991 г. В США заработала первая нанотехнологическая программа Национального научного фонда. Аналогичной деятельностью озаботилось и правительство Японии. А вот в Европе серьезная поддержка таких исследований на государственном уровне началась только с 1997 г.

1997 г. Эрик Дрекслер объявил, что к 2020 г. станет возможной промышленная сборка наноустройств из отдельных атомов. До сего времени почти все его прогнозы сбывались с опережением.

1999 г. Американские ученые - профессор физики Марк Рид (Йельский университет) и профессор химии Джеймс Тур (Райсский университет) - разработали единые принципы манипуляции как одной молекулой, так и их цепочкой.

2000 г. Немецкий физик Франц Гиссибл разглядел в кремнии субатомные частицы.

2001 г. Реальное финансирование NNI превысило запланированное (422 млн. долл.) на 42 млн.

2002 г. Сиз Деккер соединил углеродную трубку с ДНК, получив единый наномеханизм. Финансирование NNI составило 697 млн. долл. (на 97 млн. больше плана).

2003 г. Профессор Фенг Лью из университета Юты, используя наработки Франца Гиссибла, с помощью атомного микроскопа построил образы орбит электронов путем анализа их возмущения при движении вокруг ядра.

1.3 Современный уровень развития нанотехнологий

В настоящее время наноматериалы используют для изготовления защитных и светопоглощающих покрытий, спортивного оборудования, транзисторов, светоиспускающих диодов, топливных элементов, лекарств и медицинской аппаратуры, материалов для упаковки продуктов питания, косметики и одежды. Нанопримеси на основе оксида церия уже сейчас добавляют в дизельное топливо, что позволяет на 4-5% повысить КПД двигателя и снизить степень загрязнения выхлопных газов.

Общемировые затраты на нанотехнологические проекты превышают $9 млрд. в год. На долю США приходится примерно треть всех мировых инвестиций в нанотехнологии. Другие главные игроки на этом поле - Европейский Союз и Япония. Исследования в этой сфере активно ведутся также в странах бывшего СССР, Австралии, Канаде, Китае, Южной Корее, Израиле, Сингапуре, Бразилии и Тайване. Прогнозы показывают, что к 2015 году общая численность персонала различных отраслей нанотехнологической промышленности может дойти до 2 млн. человек, а суммарная стоимость товаров, производимых с использованием наноматериалов, составит, как минимум, несколько сотен миллиардов долларов и, возможно, приблизится к $1 трлн. В общей сложности американская промышленность и индустрия других развитых стран сейчас применяют нанотехнологии в процессе производства, как минимум, 80 групп потребительских товаров и свыше 600 видов сырьевых материалов, комплектующих изделий и промышленного оборудования.

Глава 2. Применение нанотехнологий.

2.1. Наноэлектроника и нанофотоника

Существуют следующие основные направления наноэлектроники:

1. Кремниевая электроника.

2. Электроника на механотранзисторах.

3. Электроника на нанотрубках.

4. Молекулярная электроника.

5. Одноэлектроника.

6. Спинтроника.

7. Квантовая электроника.

8. Многозондовые системы.

9. Гибкая электроника.

Электроника на механотранзисторах. По своим размерам современные транзисторы могут быть всего в несколько раз больше молекулы. Однако даже эти компоненты намного больше, чем новое поколение наноэлементов, в которых вместо кремния будут использоваться органические соединения и углеродные нанотрубки. Нанотехнологии позволят не только уменьшить размеры микросхем, но и увеличить количество транзисторов в них, что значительно повысит производительность.

Электроника на нанотрубках. Размеры углеродных нанотрубок сопоставимы с размерами молекул. Средний диаметр однослойной углеродной нанотрубки составляет около 1 нанометра. Если же удастся «заставить» одну нанотрубку хранить один бит информации, то память на их основе будет хранить колоссальные объемы информации, ведь современные ячейки flash-памяти, хранящие один бит информации, имеют размеры от 50 до 90 нанометров.

Одной из перспективнейших отраслей применения нанотехнологий является компьютерная техника. Несмотря на значительную миниатюризацию и оптимизацию современных устройств, имеющихся на рынке, нанотехнологии смогут совершить в этой сфере настоящую революцию. В этом случаи размеры действующих элементов микропроцессоров и устройств памяти приближаются к квантовым пределам, то есть границам мельчайших единиц материи и энергии - когда работает один электрон, один спин, квант магнитного потока, энергии и т.д. Это сулит быстродействие порядка ТГц (~1012 операций в секунду), плотность записи информации ~103 Тбит/см2, что намного порядков выше, чем достигнутые сегодня, а энергопотребление - на несколько порядков ниже. При такой плотности записи в жестком диске - размерами с наручные часы - можно было бы разместить громадную библиотеку национального масштаба или фотографии, отпечатки пальцев, медицинские карты и биографии всех жителей Земли.

Нанофотоника. Компании, занимающиеся нанофотоникой, разрабатывают высокоинтегрированные компоненты оптических коммуникаций с применением технологий нанооптики и нанопроизводства. Такой подход к изготовлению оптических компонентов позволяет ускорить получение их прототипов, улучшить технические характеристики, уменьшить размеры и снизить стоимость.

2.2. Наноэнергетика

Наоэнергетика включает в себя:

1. Энергетические системы

2. Генерация энергии: солнечные батареи, термоэлектрические элементы, микрожидкостные генераторы, ядерные установки, термоядерные установки, батарейки и аккумуляторы.

3. Топливные элементы: водородные элементы, передача энергии (высокотемпературные сверхпроводники, формирование градиента температур)

Солнечные батареи. Солнечную батарею толщиной в бумажный лист, которую можно гнуть и сворачивать, создала японская электротехническая компания Sharp. Как сообщает сегодня токийская печать, батарея в виде пленки имеет толщину от 1 до 3 микрометров - то есть, от одной до трех тысячных миллиметра. Это меньше современных аналогов примерно в сто раз. Компания собирается начать промышленное производство новики уже в этом году. Слоями солнечных батарей планируется покрывать мобильные телефоны, автомобили и даже специальную одежду. Пленка площадью в две визитные карточки весит всего один грамм и обладает мощностью в 2,6 ватт. По словам разработчиков, этого уже достаточно, чтобы обеспечить электропитанием велосипедный фонарь.

Батарейки и аккумуляторы. Компания Toshiba разработала литиево-ионную батарею на основе наноматериалов, которая заряжается примерно в 60 раз быстрее обычной. За одну минуту её можно заправить на 80%, а полная ёмкость аккумулятора (у первого образца она была равна 600 миллиампер-часов) заполняется через несколько минут (см. рис. 2).

Рисунок 2. Нанобатарейка (3,8х62х35 мм)

Создать нанобатрейку удалось благодаря новой технологии, основанной на использовании наночастиц, находящихся в составе материала отрицательного электрода батареи. При зарядке батареи, наночастицы быстро собирают и хранят ионы лития. На рынке скоростная батарейка появилась в 2006 году.

2.3. Наномедицина

Современная технология – нанотехнология - позволяет работать с веществом в масштабах, еще недавно казавшихся фантастическими - микрометровых, и даже нанометровых. Именно такие размеры характерны для основных биологических структур - клеток, их составных частей (органелл) и молекул.

Современные приложения нанотехнологий в медицине можно разделить на несколько групп:

1. Наноструктурированные материалы, в т. ч., поверхности с нанорельефом, мембраны с наноотверстиями. В настоящее время достигнуты успехи в изготовлении наноматериала, имитирующего естественную костную ткань.

2. Наночастицы (в т. ч., фуллерены и дендримеры). Спектр возможных применений чрезвычайно широк. Он включает борьбу с вирусными заболеваниями такими, как грипп и ВИЧ, онкологическими и нейродегенеративными заболеваниями, остеопорозом, заболеваниями сосудов. Наносферы могут использоваться и в диагностике, например, как рентгеноконтрастное вещество, прикрепляющееся к поверхности определённых клеток и показывающее их расположение в организме.

3. Микро- и нанокапсулы. Миниатюрные (~1 мк) капсулы с нанопорами могут быть использованы для доставки лекарственных средств в нужное место организма. Уже испытываются подобные микрокапсулы для доставки и физиологически регулируемого выделения инсулина при диабете 1-го типа.

4. Нанотехнологические сенсоры и анализаторы. Использование микро- и нанотехнологий позволяет многократно повысить возможности по обнаружению и анализу сверхмалых количеств различных веществ. Одним из вариантов такого рода устройства является «лаборатория на чипе» (lab on a chip). Это пластинка, на поверхности которой упорядоченно размещены рецепторы к нужным веществам, например, антитела. Такое устройство, способное обнаруживать буквально отдельные молекулы может быть использовано при определении последовательности оснований ДНК или аминокислот, обнаружения возбудителей инфекционных заболеваний, токсических веществ.

5. Медицинские применения сканирующих зондовых микроскопов. Сканирующие микроскопы представляют собой группу уникальных по своим возможностям приборов. Они позволяют достигать увеличения достаточного, чтобы рассмотреть отдельные молекулы и атомы.

6. Наноинструменты и наноманипуляторы. Наноманипуляторами можно назвать устройства, предназначенные для манипуляций с нанообъектами - наночастицами, молекулами и отдельными атомами. Примером могут служить сканирующие зондовые микроскопы, которые позволяют перемещать любые объекты вплоть до атомов.

7. Микро- и наноустройства различной степени автономности. В настоящее время всё большее распространение получают миниатюрные устройства, которые могут быть помещены внутрь организма для диагностических, а возможно, и лечебных целей. Современное устройство, предназначенное для исследования желудочно-кишечного тракта, имеет размер несколько миллиметров, несёт на борту миниатюрную видеокамеру и систему освещения. Полученные кадры передаются наружу.

2.4. Нанобиотехнологии

Особое место в нанотехнологиях занимает область нанобиотехнологий. Речь идет о создании устройств с использованием биологических макромолекул в целях изучения или управления биологическими системами.

Нанобиотехнология объединяет достижения нанотехнологии и молекулярной биологии. В ней широко используется способность биомолекул к самосборке в наноструктуры. Так, например, липиды способны спонтанно объединяться и формировать жидкие кристаллы. ДНК используется не только для создания наноструктур, но и в качестве важного компонента наномеханизмов. Предполагается, например, что вместо того, чтобы создавать кремниевую основу микросхем, нанотехнологи смогут использовать двухцепочечную молекулу ДНК, особенности которой позволяют объединять атомы в предсказуемой последовательности.

По мнению ряда ученых, нанобиотехнологии существенно упрощают и ускоряют решение традиционных проблем генетики сельскохозяйственных видов. Таких, к примеру, как контроль происхождения, выявление носителей неблагоприятных мутаций или инфекций, а также генов, связанных с желательными хозяйственно ценными признаками, включая устойчивость к неблагоприятным факторам окружающей среды.

2.5. Нанокосметика

Использование нанотехнологий в косметике началось сравнительно недавно.

L"Oreal, мировой лидер по производству косметики, вкладывает миллионы в исследования нанотехнологии. Компания верит в то, что будущее именно за нанокосметикой - когда-нибудь она поможет замедлить старение кожи, предотвратить появление седых волос и даже облысение.

Несколько лет назад L"Oreal выпустила на рынок знаменитый крем Revitalift, содержащий наносомы Про-Ретинола А, и, по заверению компании, этот крем впитывается в кожу куда лучше, чем кремы других марок, за счет особых микрочастиц (см. рис. 3).Традиционные кремы лишь образовывали барьер, защищающий кожу от потери влаги, тогда как лореалевская новинка с помощью микрочастиц действовала на более глубокие слои кожи и стимулировала обновление клеток.

Рисунок 3. Крем компании L"Oreal

Dior «выступил» на рынок с «липосомами», которые по своей функции похожи на лореалевские «наносомы». Estee и Johnson & Johnson также стали производить продукцию с использованием нанотехнологий.

Большинство обычных кремов из числа так называемой «поверхностной косметики» не достигают глубоких слоев кожи, оставаясь на поверхности. Такие кремы могут хорошо защищать кожу и не более того. Нанокосметика действует на уровне атомов, доставляя увлажняющие компоненты и антиоксиданты в так называемых «наносферах» или «наносомах» - маленьких капельках, которые в миллионы раз меньше частицы песка. В теории, эти наносомы проникают очень глубоко в кожу, принося с собой увлажняющие компоненты и удаляя мертвые клетки глубоко под поверхностным слоем кожи.

Однако косметологи не остановились на наносомах и предложили потребителям так называемые «нанокомплексы», объединяющие активные вещества, измельченные до размера «нано», в системы. Нанокомплексы могут быть заранее «запрограммированы» под определенную проблему и высвобождать активные вещества именно там, где это необходимо.

У бренда лечебной косметики для волос Kerastase, принадлежащего компании L’Oreal, есть несколько продуктов для волос, созданных с использованием нанотехнологий.

Нанотехнологии используются не только при производстве увлажняющих кремов, но и солнцезащитных средств. Оказывается, солнцезащитный крем может быть практически неощутимым, но, в то же время, способным защитить от вредного солнечного излучения на самом высоком уровне.

2.6. Нанотехнологии для легкой промышленности

Наноматериалы в текстиле. Текстиль на основе наноматериалов приобретает уникальные по своим показателям водонепроницаемость, грязеотталкивание, теплопроводность, способность проводить электричество и другие свойства.

Наноматериалы могут иметь в своем составе наночастицы, нановолокна и другие добавки. Например, компания Nano-Tex успешно производит ткани, улучшенные с помощью нанотехнологий. Одна из таких тканей обеспечивает абсолютную водонепроницаемость: благодаря изменению молекулярной структуры волокон, капли воды полностью скатываются с полотна, которое при этом «дышит».

А американская компания NanoSoni c разработала уникальную технологию, позволяющую создавать материалы с невозможными в природе свойствами, в частности, листы полимера, гибкие и упругие, как резина, и проводящие ток, как металл. Новый продукт назвали Metall Rubber - металлизированная резина.

Из «горячих новинок» текстильного нанорынка следует отметить утеплительный материал Aspen"s Pyrogel AR5401 , изготовленный на основе полимерного материала с нанопорами. Благодаря им материал ведет себя как хороший теплоизолятор. Компания Aspen Aerogels в марте 2004 г. начала производство из нового материала утепляющих стелек для обуви. Эти стельки заказывали: команда, выигравшая в 2004 г. марафон к Северному полюсу, одна из канадских лыжных команд и элитное спецподразделение армии США. Отзывы заказчиков о продукте были схожими: это универсальное решение для работы в экстремальных условиях. Нанопокрытия. Нанотехнологии также применяются для улучшения свойств традиционного текстиля и изделий из него. В этом случае на текстиль наносятся покрытия, модифицирующие его в микронном и субмикронном размерных диапазонах. Энергосберегающая технология фотокатализа очищает поверхность текстиля без применения химикатов и энергии, исключительно под воздействием нанокатализаторов, нанесенных с использованием традиционного текстильного оборудования, солнечного света и воды. Гонконгские ученые создали покрытие на основе наночастиц, которое предотвращает загрязнение ткани, а также способствует ее обеззараживанию. Некоторые нанопокрытия доступны и на российском рынке. Это обеззараживающие покрытия на основе наночастиц серебра и оксида цинка а также покрытия, создающие устойчивый слой, который не пропускает ультрафиолет. Электроника и микроэлектромеханические системы (МЭМС). Интеграция в текстиль микро- и наноэлектроники, а также МЭМС существенно расширяет возможности повседневной одежды, которую можно использовать в качестве средства связи и даже персонального компьютера. А изготовление текстиля со встроенными датчиками позволит производить мониторинг состояния тела человека. Это, безусловно, откроет новые возможности в медицинской практике, спорте и жизнеобеспечении в экстремальных условиях (см. рис. 4).

Рисунок 4. «Умная» одежда с использованием нанотехнологий

Исследователи из университета штата Аризона под руководством профессора Фредерика Ценгаусерна пытаются создать биометрическую одежду, интегрировав в обычное трико, которым часто пользуются спортсмены, гибкий дисплей, набор сенсоров для детекции вредных веществ, микроскопический топливный элемент, микронасосы и т.д. Не удивительно, что такой «навороченный» костюм предназначается для военного применения, но может использоваться и в мирных отраслях, например, в медицине, где он сам проверит состояние больного (например, диабетика) и сам вовремя сделает необходимые инъекции.

Что касается России, то сегодня более 90% швейных предприятий страны применяют разработанные институтом технологии изготовления одежды. Но не один только ЦНИИШП занимается внедрением нанотехнологий в лёгкую промышленность. В России существует Центральный научно-исследовательский институт хлопчатобумажной промышленности (ЦНИИХБП), институт пластмасс, учебные и текстильные институты.

2.7. Нанотехнологии для обеспечения безопасности

Современные достижения в области наноматериалов и нанотехнологий открывают новые возможности для повышения в десятки раз тактико-технических характеристик систем безопасности и являются по своей сути инновационными, поскольку направлены на создание, главным образом, новой продукции, востребованной рынком систем безопасности. В ближайшие 3–10 лет наиболее перспективны следующие направления использования нанотехнологий в системах безопасности:

1. Новые средства и методы контроля и защиты документов от подделки, например на основе наноматериалов, микропечати, тонких электронных схем, бумаги с добавлением наночастиц, компактных устройств считывания данных.

2. Системы контроля доступа в помещения на основе наносенсоров, например считыватели отпечатков пальца, теплового рисунка вен руки или головы, геометрической формы руки в динамике.

3. Многофункциональные сенсоры «электронный нос» для обнаружения и идентификации сверхмалых количеств взрывчатых, наркотических и опасных веществ.

4. Более компактные, чуткие и информативные портативные и стационарные металлоискатели и детекторы движения на основе наносенсоров.

5. Распределенные массивы наносенсоров типа «умная пыль» для охраны границ и периметров объектов.

6. Магниторезонансные установки для точного анализа объемного содержания закрытых емкостей и грузов в аэропортах, на проходных, на таможне.

Примеры создания перспективных технических средств и систем безопасности на базе нанотехнологий и наноматериалов, имеющие высокую степень завершенности исследований:

1. Антитеррористические средства, в т.ч. гиперспектральные наноанализаторы сверхнизких концентраций взрывчатых, наркотических и других запрещенных к распространению веществ.

2. Системы контроля и управления доступа, паспортного и миграционного контроля, в т.ч.:

Идентификационные документы и системы контроля и управления доступа на базе нанометок и нанопамяти, включая системы для идентификации лиц на основе получения, записи на защищенный носитель (нанопамять) и цифровой обработки трехмерного видеоизображения;

Замковые устройства для режимных помещений с уникальными электронными ключами – нанометками;

Электронные заграничные паспорта второго поколения и миграционные удостоверения с нанопамятью 1–10 Гбайт.

В настоящее время в нашей стране сформированы кооперации соисполнителей, способные в кратчайшие сроки реализовать проекты по созданию перспективных систем безопасности. Дело за инвестированием инновационных проектов. И здесь роль государства, как никогда, велика.

2.8. Нанотехнологии для сельского хозяйства и пищевой промышленности

Направления использования нанотехнологий в сельском хозяйстве связаны с воспроизводством сельскохозяйственных видов, переработкой конечной продукции и улучшением ее качества. Нанотехнологии уже используют для обеззараживания воздуха и различных материалов, в том числе кормов и конечной продукции животноводства; обработки семян и урожая в целях его сохранения. Их применяют при стимуляции роста растений; лечении животных; улучшении качества кормов. Есть опыт внедрения этих технологий для уменьшения энергоемкости производства, оптимизации методов обработки сырья и увеличения выхода конечной продукции; разработки новых упаковочных материалов, позволяющих долго сохранять конечную продукцию.

Под эгидой ФАО создана база данных о 160 проектах использования нанотехнологий в сельском хозяйстве, которые финансировались и разрабатывались на 2006 г. Большинство из них связано с пищевой промышленностью, с использованием наноматериалов для упаковки пищи или определения и, в отдельных случаях, нейтрализации опасных токсинов, аллергенов или патогенов. Развиваются проекты по созданию и улучшению пищевых добавок, получению растительного масла с нанодобавками, которые препятствуют поступлению холестерина в кровь млекопитающих.

Таким образом, преимущества и возможности использование нанотехнологий и наноматериалов очевидны. Поэтому вполне объясним повышенный интерес к этой теме в современном мире, т.к. она является источником новых подходов к повышению качества жизни и решению многих социальных проблем в высокоиндустриальном обществе.

Заключение

Ключевые технологии и материалы всегда играли большую роль в истории цивилизации, выполняя не только узко производственные функции, но и социальные. Достаточно вспомнить, как сильно отличались каменный и бронзовый века, век пара и век электричества, атомной энергии и компьютеров. По мнению многих экспертов, XXI в. будет веком нанонауки и нанотехнологий, которые и определят его лицо. Воздействие нанотехнологий на жизнь обещает иметь всеобщий характер, изменить экономику и затронуть все стороны быта, работы, социальных отношений. С помощью нанотехнологий мы сможем экономить время, получать больше благ за меньшую цену, постоянно повышать уровень и качество жизни.

Главная надежда нанотехнологий связана с тем, что удастся двигаться не «сверху вниз», а «снизу вверх», т.е. выращивать наноструктуры, наноматериалы, нанообъекты. Нанотехнологии требуют больших объемов материалов и собирать их атом за атомом невозможно. Поэтому есть два основных ключа к нанотехнологиям:

1. Нужно организовать процессы так, чтобы наноструктуры собирались сами, образуя то, чего бы нам хотелось. Другими словами, это процессы самоорганизации, самоформирования и самосборки.

2. Решение многих проблем нанотехнологий требует совместной деятельности физиков, химиков, математиков, биологов - общего языка, понятий и моделей - междисциплинарного подхода. Кроме того, именно широкий междисциплинарный взгляд дает понимание того, чего в принципе возможно достичь, чего хотелось бы достичь и - главное - чего хотелось бы избежать. Здесь первостепенное значение приобретает проектирование будущего, в котором технологические, экономические, политические, военные и социальные проблемы оказываются значительно более взаимосвязаны, чем ныне. Это обусловлено совершенно новыми технологическими возможностями.

В самом деле, чтобы нанотехнологии не остались научной фантастикой, они должны найти свое место в экономике, включиться в существующие экономические циклы или создать новые. Это требует активного мониторинга и сопровождения на всех этапах от лаборатории до рынка. Это качественно новый уровень управления, позволяющий решать организационно-экономические проблемы невиданного уровня сложности.

В развитых странах осознание ключевой роли, которую уже в недалеком будущем будут играть результаты работ по нанотехнологиям, привело к разработке широкомасштабных программ по их развитию и государственной поддержке.

Из числа технологически продвинутых стран Россия - единственная - до настоящего времени не имеет программы развития нанотехнологий федерального масштаба. Исследования в этом направлении проводятся в рамках академических институтов, частично вузов, входят отдельными разделами в отраслевые программы, но, как правило, не завершаются практическим внедрением результатов. Более того, даже осуществить зарубежное патентование отечественных изобретений, как правило, не удается, так как государство в этом не заинтересовано и никакой финансовой поддержки авторам изобретений не оказывает. Растворение проблематики нанотехнологий в отдельных разделах федеральных и отраслевых программ не позволяет даже оценить, сколько средств выделяется государством на их развитие. По существующим оптимистическим оценкам - несколько десятков миллионов долларов США. При этом сотни высококлассных российских специалистов, которые могли бы составить цвет отечественной нанотехнологии, вынуждены работать за рубежом. Отсутствие Федеральной программы, четкой целевой установки на промышленное внедрение разработок, неготовность отраслей к восприятию достижений нанотехнологии, убогость финансирования - все это является следствием отсутствия государственной политики в этом стратегически важном направлении.

Список использованных источников:

Литературные источники

1. Глинк Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение: Пер. с англ. М.: Мир, 2002. С. 58-73.

2. Головин Ю.И. Введение в нанотехнику. М., 2006. С.32-45

3. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. М., 2005.С. 51-55, 78-91.

4. Кобаяси Н. Введение в нанотехнологию. М., 2005. С. 10-17

5. Нанотехнологии. Ч. Пул, Ф. Оуэнс. Пер. с англ. - Москва: Техносфера, 2005. С.7-20.

6. Нанотехнология в ближайшем десятилетии. Прогноз направления развития // Под ред. М.К.Роко, Р.С.Уильямса и П.Аливисатоса: Пер. с англ. М.: Мир, 2002. С. 54-63.

7. Структура и свойства нанокристаллических материалов. Под ред. Г.Г. Талуда и Н.Н. Носковой. Екатеринбург: Изд-воУрО РАН, 1999. - С.123-140 .

8. Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. М., 2006.

Периодическая печать:

9. Алферов Ж.И., Асеев А.Л., Гапонов С.В., Копьев П.С, Панов В.И., Полторацкий Э.А., Сибельдин Н.Н., Сурис Р.А. Наноматериалы и нанотехнологий // Микросистемная техника. 2003. №8. С. 3-13.

10. Артюхов И.В., Кеменов В.Н., Нестеров С.Б.. Биомедицинские технологии. Обзор состояния и направления работы. Материалы 9-й научно-технической конференции «Вакуумная наука и техника»-М.: МИЭМ, 2002, с. 244-247

11. Нестеров C.Б.. Нанотехнология. Современное состояние и перспективы. «Новые информационные технологии». Тезисы докладов XII Международной студенческой школы-семинара-М.: МГИЭМ, 2004, 421 с., с.21-22.

12. Основы политики Российской Федерации в области науки и технологий на период до 2010 года и дальнейшую перспективу // Поиск. 2002. № 16 (19 апреля).

Материалы с сайтов сети Интернет

13. http:// www.nanonewsnet.ru

14. http:// www.nanotube.ru

15. http:// www.nanorf.ru

16. http:// www.nanoware.ru

17. http:// www.pronano.ru

18. http://www.passion.ru

19. http://www.ifmachines.com

20. http://www.rosbaltvolga.ru

21. http:// www.chemworld.narod.ru

22. http://www.navy.ru



Добавить свою цену в базу

Комментарий

Нанотехнология – область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами.

История

Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «Внизу полным-полно места» (англ. «There’s Plenty of Room at the Bottom»), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире, будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма.

Последний этап – полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать произвольное число таких машин. Эти машины смогут таким же способом, поатомной сборкой, собирать макровещи. Это позволит сделать вещи на порядок дешевле – таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. В ходе теоретического исследования данной возможности появились гипотетические сценарии конца света, которые предполагают, что нанороботы поглотят всю биомассу Земли, выполняя свою программу саморазмножения (так называемая «серая слизь» или «серая жижа»).

Первые предположения о возможности исследования объектов на атомном уровне можно встретить в книге «Opticks» Исаака Ньютона, вышедшей в 1704 году. В книге Ньютон выражает надежду, что микроскопы будущего когда-нибудь смогут исследовать «тайны корпускул».

Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах: «Машины создания: Грядущая эра нанотехнологии» («Engines of Creation: The Coming Era of Nanotechnology») и «Nanosystems: Molecular Machinery, Manufacturing, and Computation».

На что способны нанотехнологии?

Вот только некоторые области, в которых нанотехнологии обещают прорыв:

Медицина

Наносенсоры обеспечат прогресс в ранней диагностике заболеваний. Это увеличит шансы на выздоровление. Мы сможем победить рак и другие болезни. Старые лекарства от рака уничтожали не только больные клетки, но и здоровые. С помощью нанотехнологий лекарство будет доставляться непосредственно в больную клетку.

ДНК‑нанотехнологии – используют специфические основы молекул ДНК и нуклеиновых кислот для создания на их основе четко заданных структур. Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис‑пептиды).

В начале 2000‑го года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии –наноплазмонике . Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.

Строительство

Нанодатчики строительных конструкций будут следить за их прочностью, обнаруживать любые угрозы целостности. Объекты, построенные с использованием нанотехнологий, смогут прослужить в пять раз дольше, чем современные сооружения. Дома будут подстраиваться под потребности жильцов, обеспечивая им прохладу летом и сохраняя тепло зимой.

Энергетика

Мы меньше будем зависеть от нефти и газа. У современных солнечных батарей КПД около 20%. С применением нанотехнологий он может вырасти в 2-3 раза. Тонкие нанопленки на крыше и стенах смогут обеспечить энергией весь дом (если, конечно, солнца будет достаточно).

Машиностроение

Всю громоздкую технику заменят роботы – легко управляемые устройства. Они смогут создавать любые механизмы на уровне атомов и молекул. Для производства машин будут использоваться новые наноматериалы, которые способны снижать трение, защищать детали от повреждений, экономить энергию. Это далеко не все сферы, в которых могут (и будут!) применяться нанотехнологии. Ученые считают, что появление нанотехнологий – начало новой Научно-технической революции, которая сильно изменит мир уже в ХХI веке. Стоит, правда, заметить, что в реальную практику нанотехнологии входят не очень быстро. Не так много устройств (в основном электроника) работает «с нано». Отчасти это объясняется высокой ценой нанотехнологий и не слишком высокой отдачей от нанотехнологической продукции.

Вероятно, уже в недалёком будущем с помощью нанотехнологий будут созданы высокотехнологичные, мобильные, легко управляемые устройства, которые успешно заменят пусть и автоматизированную, но сложную в управлении и громоздкую технику сегодняшнего дня. Так, например, со временем биороботы, управляемые посредством компьютера, смогут выполнять функции нынешних громоздких насосных станций.

  • ДНК‑компьютер – вычислительная система, использующая вычислительные возможности молекул ДНК. Биомолекулярные вычисления – это собирательное название для различных техник, так или иначе связанных с ДНК или РНК. При ДНК‑вычислениях данные представляются не в форме нулей и единиц, а в виде молекулярной структуры, построенной на основе спирали ДНК. Роль программного обеспечения для чтения, копирования и управления данными выполняют особые ферменты.
  • Атомно‑силовой микроскоп – сканирующий зондовый микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. В отличие от сканирующего туннельного микроскопа (СТМ), может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение атомно‑силового микроскопа зависит от размера кантилевера и кривизны его острия. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.
  • Антенна‑осциллятор – 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна‑осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц, что позволяет передавать с ее помощью огромные объемы информации.

10 нанотехнологий с удивительным потенциалом

Попробуйте вспомнить какое-нибудь каноническое изобретение. Вероятно, кто-то сейчас представил себе колесо, кто-то самолет, а кто-то и «айпод». А многие ли из вас подумали об изобретении совсем нового поколения – нанотехнологиях? Этот мир малоизучен, но обладает невероятным потенциалом, способным подарить нам действительно фантастические вещи. Удивительная вещь: направление нанотехнологий не существовало до 1975 года, даже несмотря на то, что ученые начали работать в этой сфере гораздо раньше.

Невооруженный глаз человека способен распознать объекты размером до 0,1 миллиметра. Мы же сегодня поговорим о десяти изобретениях, которые в 100 000 раз меньше.

Электропроводимый жидкий металл

За счет электричества можно заставить простой сплав жидкого металла, состоящий из галлия, иридия и олова, образовывать сложные фигуры или же наматывать круги внутри чашки Петри. Можно с некоторой долей вероятности сказать, что это материал, из которого был создан знаменитый киборг серии T-1000, которого мы могли видеть «Терминаторе 2».

«Мягкий сплав ведет себя как умная форма, способная при необходимости самостоятельно деформироваться с учетом изменяющегося окружающего пространства, по которому он движется. Прямо как мог делать киборг из популярной научно-фантастической киноленты», – делится Джин Ли из университета Цинхуа, один из исследователей, занимавшихся данным проектом.

Этот металл биомиметический, то есть он имитирует биохимические реакции, хотя сам не является биологическим веществом.

Управлять этим металлом можно за счет электрических разрядов. Однако он и сам способен самостоятельно передвигаться, за счет появляющегося дисбаланса нагрузки, которое создается разностью в давлении между фронтальной и тыльной частью каждой капли этого металлического сплава. И хотя ученые считают, что этот процесс может являться ключом к конвертации химической энергии в механическую, молекулярный материал в ближайшем будущем не собираются использовать для строительства злых киборгов. Весь процесс «магии» может происходить только в растворе гидроксида натрия или соляном растворе.

Нанопластыри

Исследователи из Йоркского университета работают над созданием специальных пластырей, которые будут предназначаться для доставки всех необходимых лекарств внутрь организма без какого-либо использования иголок и шприцов. Пластыри вполне себе обычного размера приклеиваются к руке, доставляют определенную дозу наночастиц лекарственного средства (достаточно маленькие, чтобы проникнуть через волосяные фолликулы) внутрь вашего организма. Наночастицы (каждая размером менее 20 нанометров) сами найдут вредоносные клетки, убьют их и будут выведены из организма вместе с другими клетками в результате естественных процессов.

Ученые отмечают, что в будущем такие нанопластыри можно будет использовать при борьбе с одним из самых страшных заболеваний на Земле – раком. В отличие от химиотерапии, которая в таких случаях чаще всего является неотъемлемой частью лечения, нанопластыри смогут в индивидуальном порядке находить и уничтожать раковые клетки и оставлять при этом здоровые клетки нетронутыми. Проект нанопластыря получил название «NanJect». Его разработкой занимаются Атиф Сайед и Закария Хуссейн, которые в 2013 году, еще будучи студентами, получили необходимое спонсирование в рамках краудсорсинговой компании по привлечению средств.

Нанофильтр для воды

При использовании этой пленки в сочетании с тонкой сеткой из нержавеющей стали нефть отталкивается, и вода в этом месте становится первозданно чистой.

Что интересно, на создание нанопленки ученых вдохновила сама природа. Листья лотоса, также известного как водяная лилия, обладают свойствами, противоположными свойствам нанопленки: вместо нефти они отталкивают воду. Ученые уже не первый раз подглядывают у этих удивительных растений их не менее удивительные свойства. Результатом этого, например, стало создание супергидрофобных материалов в 2003 году. Что же касается нанопленки, исследователи стараются создать материал, имитирующий поверхность водяных лилий, и обогатить его молекулами специального очищающего средства. Само покрытие невидимо для человеческого глаза. Производство будет недорогим: примерно 1 доллар за квадратный фут.

Очиститель воздуха для подводных лодок

Вряд ли кто-то задумывался о том, каким воздухом приходится дышать экипажам подводных лодок, кроме самих членов экипажа. А между тем очистка воздуха от двуокиси углерода должна производиться немедленно, так как за одно плаванье через легкие команды подлодки одному и тому же воздуху приходится проходить сотни раз. Для очистки воздуха от углекислого газа используют амины, обладающие весьма неприятным запахом. Для решения этого вопроса была создана технология очистки, получившая название SAMMS (аббревиатура от Self-Assembled Monolayers on Mesoporous Supports). Она предлагает использование специальных наночастиц, помещенных внутрь керамических гранул. Вещество обладает пористой структурой, благодаря которой оно поглощает избыток углекислого газа. Различные типы очистки SAMMS взаимодействуют с различными молекулами в воздухе, воде и земле, однако все из этих вариантов очисток невероятно эффективны. Всего одной столовой ложки таких пористых керамических гранул хватит для очистки площади, равной одному футбольному полю.

Нанопроводники

Исследователи Северо-Западного университета (США) выяснили, как создать электрический проводник на наноуровне. Этот проводник представляет собой твердую и прочную наночастицу, которая может быть настроена на передачу электрического тока в различных противоположных направлениях. Исследование показывает, что каждая такая наночастица способна эмулировать работу «выпрямителя тока, переключателей и диодов». Каждая частица толщиной 5 нанометров покрыта положительно заряженным химическим веществом и окружена отрицательно заряженными атомами. Подача электрического разряда реконфигурирует отрицательно заряженные атомы вокруг наночастиц.

Потенциал у технологии, как сообщают ученые, небывалый. На ее основе можно создавать материалы, «способные самостоятельно изменяться под определенные компьютерные вычислительные задачи». Использование этого наноматериала позволит фактически «перепрограммировать» электронику будущего. Аппаратные обновления станут такими же легкими, как и программные.

Нанотехнологическое зарядное устройство

Когда эту штуку создадут, то вам больше не потребуется использовать никакие проводные зарядные устройства. Новая нанотехнология работает как губка, только впитывает не жидкость. Она высасывает из окружающей среды кинетическую энергию и направляет ее прямо в ваш смартфон. Основа технологии заключается в использовании пьезоэлектрического материала, который генерирует электричество, находясь в состоянии механического напряжения. Материал наделен наноскопическими порами, которые превращают его в гибкую губку.

Официальное название этого устройства – «наногенератор». Такие наногенераторы могут однажды стать частью каждого смартфона на планете или же частью приборной панели каждого автомобиля, а возможно, и частью каждого кармана одежды – гаджеты будут заряжаться прямо в нем. Кроме того, технология имеет потенциал использования на более масштабном уровне, например, в промышленном оборудовании. По крайней мере так считают исследователи из Висконсинского университета в Мадисоне, создавшие эту удивительную наногубку.

Искусственная сетчатка

Израильская компания Nano Retina разрабатывает интерфейс, который будет напрямую подключатся к нейронам глаза и передавать результат нейронного моделирования в мозг, заменяя сетчатку и возвращая людям зрение.

Эксперимент на слепой курице показал надежду на успешность проекта. Нанопленка позволила курице увидеть свет. Правда, до конечной стадии разработки искусственной сетчатки для возвращения людям зрения пока еще далеко, но наличие прогресса в этом направлении не может не радовать. Nano Retina – не единственная компания, которая занимается подобными разработками, однако именно их технология на данный момент видится наиболее перспективной, эффективной и адаптивной. Последний пункт наиболее важен, так как мы говорим о продукте, который будет интегрироваться в чьи-то глаза. Похожие разработки показали, что твердые материалы непригодны для использования в подобных целях.

Так как технология разрабатывается на нанотехнологическом уровне, она позволяет исключить использование металла и проводов, а также избежать низкого разрешения моделируемой картинки.

Светящаяся одежда

Шанхайские ученые разработали светоотражающие нити, которые можно использовать при производстве одежды. Основой каждой нити является очень тонкая проволока из нержавеющей стали, которую покрывают специальными наночастицами, слоем электролюминесцентного полимера, а также защитной оболочкой из прозрачных нанотрубок. В результате получаются очень легкие и гибкие нитки, способные светиться под воздействием своей собственной электрохимической энергии. При этом работают они на гораздо меньшей мощности, по сравнению с обычными светодиодами.

Недостаток технологии заключается в том, что «запаса света» у ниток хватает пока всего лишь на нескольких часов. Однако разработчики материла оптимистично считают, что смогут увеличить «ресурс» своего продукта как минимум в тысячу раз. Даже если у них все получится, решение другого недостатка пока остается под вопросом. Стирать одежду на основе таких нанониток, скорее всего, будет нельзя.

Наноиглы для восстановления внутренних органов

Нанопластыри, о которых мы говорили выше, разработаны специально для замены игл. А что, если сами иглы были бы размером всего несколько нанометров? В таком случае они могли бы изменить наше представление о хирургии, или по крайней мере существенно ее улучшить.

Совсем недавно ученые провели успешные лабораторные испытания на мышах. С помощью крошечных игл исследователи смогли ввести в организмы грызунов нуклеиновые кислоты, способствующие регенерации органов и нервных клеток и тем самым восстанавливающие утерянную работоспособность. Когда иглы выполняют свою функцию, они остаются в организме и через несколько дней полностью в нем разлагаются. При этом никаких побочных эффектов во время операций по восстановлению кровеносных сосудов мышц спины грызунов с использованием этих специальных наноигл ученые не обнаружили.

Если брать в расчет человеческие случаи, то такие наноиглы могут использоваться для доставки необходимых средств в организм человека, например, при трансплантации органов. Специальные вещества подготовят окружающие ткани вокруг трансплантируемого органа к быстрому восстановлению и исключат возможность отторжения.

Трехмерная химическая печать

Химик Иллинойского университета Мартин Берк – настоящий Вилли Вонка из мира химии. Используя коллекцию молекул «строительного материала» самого разного назначения, он может создавать огромное число различных химических веществ, наделенных всевозможными «удивительными и при этом естественными свойствами». Например, одним из таких веществ является ратанин, который можно найти только в очень редком перуанском цветке.

Потенциал синтезирования веществ настолько огромен, что позволит производить молекулы, использующиеся в медицине, при создании LED-диодов, ячеек солнечных батарей и тех химических элементов, на синтезирование которых даже у самых лучших химиков планеты уходили годы.

Возможности нынешнего прототипа трехмерного химического принтера пока ограничены. Он способен создавать только новые лекарственные средства. Однако Берк надеется, что однажды он сможет создать потребительскую версию своего удивительного устройства, которая будет обладать куда большими возможностями. Вполне возможно, что в будущем такие принтеры будут выступать в роли своеобразных домашних фармацевтов.

Представляет ли нанотехнология угрозу здоровью человека или окружающей среде?

Информации о негативном воздействии наночасттиц не так уж и много. В 2003 г. в одном из исследований было показано, что углеродные нанотрубки могут повреждать легкие у мышей и крыс. Исследование 2004 г. показало, что фуллерены могут накапливаться и вызывать повреждения мозга у рыб. Но в обоих исследованиях были использованы большие порции вещества при необычных условиях. По словам одного из экспертов, химика Кристена Кулиновски (США), «было бы целесообразно ограничить воздействие этих наночастиц, невзирая на то, что в настоящее время информация об их угрозе человеческому здоровью отсутствует».

Некоторые комментаторы высказываются также относительно того, что широкое использование нанотехнологий может привести к рискам социального и этического плана. Так, к примеру, если использование нанотехнологий инициирует новую промышленную революцию, то это приведет к потере рабочих мест. Более того, нанотехнологии могут изменить представление о человеке, поскольку их использование поможет продлевать жизнь и существенно повышать устойчивость организма. «Никто не может отрицать, что широкое распространение мобильных телефонов и интернета привело к огромным изменениям в обществе», – говорит Кристен Кулиновски. – Кто возьмет на себя смелость сказать, что нанотехнологии не окажут более сильного воздействия на общество в ближайшие годы?»

Место России среди стран, разрабатывающих и производящих нанотехнологии

Мировыми лидерами по общему объему капиталовложений в сфере нанотехнологий являются страны ЕС, Япония и США. В последнее время значительно увеличили инвестиции в эту отрасль Россия, Китай, Бразилия и Индия. В России объем финансирования в рамках программы «Развитие инфраструктуры наноиндустрии в Российской Федерации на 2008 – 2010 годы» составит 27,7 млрд.руб.

В последнем (2008 год) отчете лондонской исследовательской фирмы Cientifica, который называется «Отчет о перспективах нанотехнологій», о российских вложениях написано дословно следующее: «Хотя ЕС по уровню вложений все еще занимает первое место, Китай и Россия уже обогнали США».

В нанотехнологиях существуют такие области, где российские ученые стали первыми в мире, получив результаты, положившие начало развитию новых научных течений.

Среди них можно выделить получение ультрадисперсных наноматериалов, проектирование одноэлектронных приборов, а также работы в области атомно‑силовой и сканирующей зондовой микроскопии. Только на специальной выставке, проводившейся в рамках XII Петербургского экономического форума (2008 год), было представлено сразу 80 конкретных разработок. В России уже производится целый ряд нанопродуктов, востребованных на рынке: наномембраны, нанопорошки, нанотрубки. Однако, по мнению экспертов, по комммерциализации нанотехнологических разработок Россия отстает от США и других развитых стран на десять лет.

Нанотехнологии в искусстве

Ряд произведений американской художницы Наташи Вита-Мор касается нанотехнологической тематики.

В современном искусстве возникло новое направление «наноарт» (наноискусство) – вид искусства, связанный с созданием художником скульптур (композиций) микро- и нано-размеров (10 −6 и 10 −9 м, соответственно) под действием химических или физических процессов обработки материалов, фотографированием полученных нано-образов с помощью электронного микроскопа и обработкой черно-белых фотографий в графическом редакторе.

В широко известном произведении русского писателя Н. Лескова «Левша» (1881 год) есть любопытный фрагмент: «Если бы, – говорит, – был лучше мелкоскоп, который в пять миллионов увеличивает, так вы изволили бы, – говорит, – увидать, что на каждой подковинке мастерово имя выставлено: какой русский мастер ту подковку делал». Увеличение в 5 000 000 раз обеспечивают современные электронные и атомно-силовые микроскопы, считающиеся основными инструментами нанотехнологий. Таким образом, литературного героя Левшу можно считать первым в истории «нанотехнологом».

Изложенные Фейнманом в лекции 1959 г. «Там внизу много места» идеи о способах создания и применения наноманипуляторов совпадают практически текстуально с фантастическим рассказом известного советского писателя Бориса Житкова «Микроруки», опубликованным в 1931 году. Некоторые отрицательные последствия неконтролируемого развития нанотехнологий описаны в произведениях М. Крайтона («Рой»), С. Лема («Осмотр на месте» и «Мир на Земле»), С. Лукьяненко («Нечего делить»).

Главный герой романа «Трансчеловек» Ю. Никитина – руководитель нанотехнологической корпорации и первый человек, испытавший на себе действие медицинских нанороботов.

В научно-фантастических сериалах «Звёздные врата: SG-1» и «Звёздные врата: Атлантида» одними из самых технически развитых рас являются две расы «репликаторов», возникших в результате неудачных опытов с использованием и описанием различных вариантов применения нанотехнологий. В фильме «День, когда Земля остановилась» с Киану Ривзом в главной роли, инопланетная цивилизация выносит человечеству смертный приговор и чуть было не уничтожает всё на планете при помощи самовоспроизводящихся нанорепликантов-жуков, пожирающих всё на своём пути.

С каждым днем мы приближаемся к неизбежной революции, которую несут в себе нанотехнологии. Мы создаем новые приборы, получаем уникальные материалы, о которых раньше не задумывались. Применение нанотехнологий в быту позволило изменить форму привычных для нас предметов. В результате этого мы получили совсем иные, но полезные свойства вещества. Окружающая нас реальность становится менее опасной и наиболее благоприятной для комфортной жизни. Наглядный пример: уменьшение привычных габаритов используемых электрических приборов до размеров наночастиц, незаметных человеческому глазу. Компьютеры становятся меньше в размерах, но намного производительнее. Нанотехнологии в быту и в промышленности позволили значительно изменить все вокруг нас.

Возможно ли создать такую форму искусственного интеллекта, который смог бы удовлетворить любые наши потребности? Ответ кроется в рациональном применении новейших разработок. Нанотехнологии — это путь в будущее, так как они затрагивают все аспекты нашей жизни. Использование нанотехнологий дает много возможностей, но и вызывает ряд опасений.

Окно в наномир

Электронный микроскоп позволяет заглянуть в микромир. Без специальной аппаратуры нанотехнологии в быту сразу заметить очень трудно, так как они настолько малы, что неразличимы невооруженным глазом. Именно в таких масштабах вещества проявляют самые необычные и неожиданные свойства. Использование таких свойств обещает уникальную технологическую революцию. Они дают радикально новые возможности, такие как управлять телом человека и окружающей средой.

История появления нанотехнологий

Все начинается в 80-х годах XX века с изобретением инструмента под названием сканирующий (СТМ). Профессор Джеймс Джимзевский провел всю свою профессиональную жизнь в мире наноразмеров. Он является одним из первых в мире людей, получивших возможность исследовать материю на уровне невероятно малых величин, миллионных долей миллиметра. Эти микроскопы позволяют изучить поверхность подобно тому, как слепые читают Тогда никто не мог подозревать, насколько пригодятся нанотехнологии в быту и промышленности.

Принцип работы с наночастицами

Сканирующий микроскоп использует зонд, представляющий собой иглу толщиной в 1 атом. Когда она приближается всего на несколько нанометров к образцу, происходит обмен электронами с ближайшей наночастицей. Это явление называется эффектом туннеля. Система управления фиксирует изменение величины туннельного тока, и вот уже на основе этой информации идет более точное построение топографии поверхности исследуемого образца. Программное обеспечение позволяет преобразовать полученные данные в изображение, которое дает ученым ключ к новому миру, используя нанотехнологии в быту и других отраслях.

Как утверждает Джеймс Джимзевский, благодаря сканирующему электронному микроскопу ученые впервые получили изображения атомов и молекул и смогли изучить их форму. Это стало настоящей революцией в науке, ведь ученые начали смотреть на многие вещи совсем по-другому, обратив внимание на свойства отдельных атомов, а не миллионы и миллиарды частиц, как это было в прошлом.

Первые открытия

Использование новых технологий привело к поразительному открытию. Когда прибор приближался к атому на расстояние в 1 нанометр, между ним и атомом возникала связь. Эта особенность позволила найти способ перемещать отдельные микрочастицы. Благодаря такому открытию появилась возможность использовать нанотехнологии для комфортного быта.

Как пояснил Джеймс Джимзевский, профессор университета Калифорнии, туннельный сканирующий микроскоп позволил практически прикасаться к молекулам и атомам. Ученые впервые смогли манипулировать атомами на поверхности вещества и создавать структуры, которые раньше нельзя было и представить.

Это новоприобретенное открытие (способность наблюдать и манипулировать мельчайшими частицами, составляющими материю) дало возможность использовать нанотехнологии во всех отраслях без исключения.

Развитие нанотехнологий

Физик и философ Этин Клин считает, что возможность технологического прорыва за счет нанотехнологий вполне реальна, но во многом это строится на энтузиазме ученого.

Как говорит физик и философ Этин Клин, с момента экспериментального подтверждения существования атомов до момента получения возможности ими манипулировать прошло меньше 100 лет. Перед учеными открываются такие возможности, о которых раньше и подумать не могли. Только благодаря этому правительство всех развитых стран стало проявлять интерес к соответствующим наукам. Все началось с американской инициативы 2002 года, с которой выступили физики Рока и Бенбридж. Эти ученые выступили с сумасшедшей идеей о том, что благодаря нанотехнологиям человечество сможет решить все стоящие перед ним проблемы.

Это заявление стало толчком к началу многочисленных исследований, позволивших реализовать такие передовые направления науки и техники, как микроэлектроника, информатика, ядерно-энергетические исследования, микробиология, лазерная техника, медицина и многое другое.

Нанотехнологии: примеры

В быту есть столько незаметных, но очень важных веществ, о присутствии которых мы даже не подозреваем! Давайте рассмотрим самые яркие примеры:

  • Зубная паста. Ранее никто не задумывался о том, почему очищающее средство для зубов бывает разным. Это все объясняется наличием определенных наночастиц. Например, гидроксиапатит кальция, который незаметен невооруженным глазом, помогает восстановить разрушенную эмаль и защитить зубы от кариеса.
  • Краска для автомобилей. Современные автомобильные краски, благодаря наночастицам, способны перекрывать неглубокие царапины и другие полости, образовавшиеся на кузове. В их состав входят микроскопические шарики, которые и обеспечивают такой эффект.


Случайные статьи

Вверх