Линейная зависимость и независимость, свойства, исследование системы векторов на линейную зависимость, примеры и решения. Линейная зависимость и независимость системы векторов


Понятия линейной зависимости и независимости системы векторов является очень важными при изучении алгебры векторов, так как на них базируются понятия размерности и базиса пространства. В этой статье мы дадим определения, рассмотрим свойства линейной зависимости и независимости, получим алгоритм исследования системы векторов на линейную зависимость и подробно разберем решения примеров.

Навигация по странице.

Определение линейной зависимости и линейной независимости системы векторов.

Рассмотрим набор из p n-мерных векторов , обозначим их следующим образом . Составим линейную комбинацию этих векторов и произвольных чисел (действительных или комплексных): . Отталкиваясь от определения операций над n -мерными векторами, а так же свойств операций сложения векторов и умножения вектора на число, можно утверждать, что записанная линейная комбинация представляет собой некоторый n -мерный вектор , то есть, .

Так мы подошли к определению линейной зависимости системы векторов .

Определение.

Если линейная комбинация может представлять собой нулевой вектор тогда, когда среди чисел есть хотя бы одно, отличное от нуля, то система векторов называется линейно зависимой .

Определение.

Если линейная комбинация представляет собой нулевой вектор только тогда, когда все числа равны нулю, то система векторов называется линейно независимой .

Свойства линейной зависимости и независимости.

На основании данных определений, сформулируем и докажем свойства линейной зависимости и линейной независимости системы векторов .

    Если к линейно зависимой системе векторов добавить несколько векторов, то полученная система будет линейно зависимой.

    Доказательство.

    Так как система векторов линейно зависима, то равенство возможно при наличии хотя бы одного ненулевого числа из чисел . Пусть .

    Добавим к исходной системе векторов еще s векторов , при этом получим систему . Так как и , то линейная комбинация векторов этой системы вида

    представляет собой нулевой вектор, а . Следовательно, полученная система векторов является линейно зависимой.

    Если из линейно независимой системы векторов исключить несколько векторов, то полученная система будет линейно независимой.

    Доказательство.

    Предположим, что полученная система линейно зависима. Добавив к этой системе векторов все отброшенные векторы, мы получим исходную систему векторов. По условию – она линейно независима, а в силу предыдущего свойства линейной зависимости она должна быть линейно зависимой. Мы пришли к противоречию, следовательно, наше предположение неверно.

    Если в системе векторов есть хотя бы один нулевой вектор, то такая система линейно зависимая.

    Доказательство.

    Пусть вектор в этой системе векторов является нулевым. Предположим, что исходная система векторов линейно независима. Тогда векторное равенство возможно только тогда, когда . Однако, если взять любое , отличное от нуля, то равенство все равно будет справедливо, так как . Следовательно, наше предположение неверно, и исходная система векторов линейно зависима.

    Если система векторов линейно зависима, то хотя бы один из ее векторов линейно выражается через остальные. Если система векторов линейно независима, то ни один из векторов не выражается через остальные.

    Доказательство.

    Сначала докажем первое утверждение.

    Пусть система векторов линейно зависима, тогда существует хотя бы одно отличное от нуля число и при этом верно равенство . Это равенство можно разрешить относительно , так как , при этом имеем

    Следовательно, вектор линейно выражается через остальные векторы системы , что и требовалось доказать.

    Теперь докажем второе утверждение.

    Так как система векторов линейно независима, то равенство возможно лишь при .

    Предположим, что какой-нибудь вектор системы выражается линейно через остальные. Пусть этим вектором является , тогда . Это равенство можно переписать как , в его левой части находится линейная комбинация векторов системы, причем коэффициент перед вектором отличен от нуля, что указывает на линейную зависимость исходной системы векторов. Так мы пришли к противоречию, значит, свойство доказано.

Из двух последних свойств следует важное утверждение:
если система векторов содержит векторы и , где – произвольное число, то она линейно зависима.

Исследование системы векторов на линейную зависимость.

Поставим задачу: нам требуется установить линейную зависимость или линейную независимость системы векторов .

Логичный вопрос: «как ее решать?»

Кое-что полезное с практической точки зрения можно вынести из рассмотренных выше определений и свойств линейной зависимости и независимости системы векторов. Эти определения и свойства позволяют нам установить линейную зависимость системы векторов в следующих случаях:

Как же быть в остальных случаях, которых большинство?

Разберемся с этим.

Напомним формулировку теоремы о ранге матрицы, которую мы приводили в статье .

Теорема.

Пусть r – ранг матрицы А порядка p на n , . Пусть М – базисный минор матрицы А . Все строки (все столбцы) матрицы А , которые не участвуют в образовании базисного минора М , линейно выражаются через строки (столбцы) матрицы, порождающие базисный минор М .

А теперь поясним связь теоремы о ранге матрицы с исследованием системы векторов на линейную зависимость.

Составим матрицу A , строками которой будут векторы исследуемой системы :

Что будет означать линейная независимость системы векторов ?

Из четвертого свойства линейной независимости системы векторов мы знаем, что ни один из векторов системы не выражается через остальные. Иными словами, ни одна строка матрицы A не будет линейно выражаться через другие строки, следовательно, линейная независимость системы векторов будет равносильна условию Rank(A)=p .

Что же будет означать линейная зависимость системы векторов ?

Все очень просто: хотя бы одна строка матрицы A будет линейно выражаться через остальные, следовательно, линейная зависимость системы векторов будет равносильна условию Rank(A)

.

Итак, задача исследования системы векторов на линейную зависимость сводится к задаче нахождения ранга матрицы, составленной из векторов этой системы.

Следует заметить, что при p>n система векторов будет линейно зависимой.

Замечание : при составлении матрицы А векторы системы можно брать не в качестве строк, а в качестве столбцов.

Алгоритм исследования системы векторов на линейную зависимость.

Разберем алгоритм на примерах.

Примеры исследования системы векторов на линейную зависимость.

Пример.

Дана система векторов . Исследуйте ее на линейную зависимость.

Решение.

Так как вектор c нулевой, то исходная система векторов линейно зависима в силу третьего свойства.

Ответ:

Система векторов линейно зависима.

Пример.

Исследуйте систему векторов на линейную зависимость.

Решение.

Не сложно заметить, что координаты вектора c равны соответствующим координатам вектора , умноженным на 3 , то есть, . Поэтому, исходная система векторов линейно зависима.

линейная зависимость

соотношение вида С1u1+С2u2+... +Сnun?0, где С1, С2,..., Сn - числа, из которых хотя бы одно? 0, а u1, u2,..., un - какие-либо математические объекты, напр. векторы или функции.

Линейная зависимость

(матем.), соотношение вида

C11u1 + C2u2 + ... + Cnun = 0, (*)

где С1, C2, ..., Cn ≈ числа, из которых хотя бы одно отлично от нуля, а u1, u2, ..., un ≈ те или иные матем. объекты, для которых определены операции сложения и умножения на число. В соотношение (*) объекты u1, u2, ..., un входят в 1-й степени, т. е. линейно; поэтому описываемая этим соотношением зависимость между ними называется линейной. Знак равенства в формуле (*) может иметь различный смысл и в каждом конкретном случае должен быть разъяснён. Понятие Л. з. употребляется во многих разделах математики. Так, можно говорить о Л. з. между векторами, между функциями от одного или нескольких переменных, между элементами линейного пространства и т. д. Если между объектами u1, u2, ..., un имеется Л. з., то говорят, что эти объекты линейно зависимы; в противном случае их называется линейно независимыми. Если объекты u1, u2, ..., un линейно зависимы, то хотя бы один из них является линейной комбинацией остальных, т. е.

u1 = a 1u1 + ... + a i-1ui-1 + a i+1ui+1 + ... + a nun.

Непрерывные функции от одного переменного

u1 = j 1(х), u2 = j 2(х), ..., un = j n(x) называются линейно зависимыми, если между ними имеется соотношение вида (*), в котором знак равенства понимается как тождество относительно х. Для того чтобы функции j 1(x), j 2(x), ..., j n(x), заданные на некотором отрезке а £ х £ b, были линейно зависимы, необходимо и достаточно, чтобы обращался в нуль их определитель Грама

i, k = 1,2, ..., n.

Если же функции j1 (x), j2(x), ..., jn(x) являются решениями линейного дифференциального уравнения, то для существования Л. з. между ними необходимо и достаточно, чтобы вронскиан обращался в нуль хотя бы в одной точке.

══ Линейные формы от m переменных

u1 = ai1x1 + ai2x2 + ... + aimxm

(i = 1, 2, ..., n)

называются линейно зависимыми, если существует соотношение вида (*), в котором знак равенства понимается как тождество относительно всех переменных x1, x2, ..., xm. Для того чтобы n линейных форм от n переменных были линейно зависимы, необходимо и достаточно, чтобы обращался в нуль определитель

Линейная зависимость и независимость векторов

Определения линейно зависимой и независимой систем векторов

Определение 22

Пусть имеем систему из n-векторови имеем набор чисел , тогда

(11)

называется линейной комбинацией данной системы векторов с данным набором коэффициентов.

Определение 23

Система векторовназываетсялинейно зависимой, если существует такой набор коэффициентов, из которых хотя бы один не равен нулю, что линейная комбинация данной системы векторов с этим набором коэффициентов равна нулевому вектору:

Пусть , тогда

Определение 24 (через представление одного вектора системы в виде линейной комбинации остальных)

Система векторов называетсялинейно зависимой, если хотя бы один из векторов этой системы можно представить в виде линейной комбинации остальных векторов этой системы.

Утверждение 3

Определения 23 и 24 эквивалентны.

Определение 25 (через нулевую линейную комбинацию)

Система векторов называетсялинейно независимой, если нулевая линейная комбинация этой системы возможна лишь при всехравных нулю.

Определение 26 (через невозможность представления одного вектора системы в виде линейной комбинации остальных)

Система векторов называетсялинейно независимой, если не один из векторов этой системы нельзя представить в виде линейной комбинации других векторов этой системы.

Свойства линейно зависимой и независимой систем векторов

Теорема 2 (нулевой вектор в системе векторов)

Если в системе векторов имеется нулевой вектор, то система линейно зависима.

Пусть, тогда.

Получим , следовательно, по определению линейно зависимой системы векторов через нулевую линейную комбинацию(12) система линейно зависима.

Теорема 3 (зависимая подсистема в системе векторов)

Если в системе векторов имеется линейно зависимая подсистема, то и вся система линейно зависима.

 Пусть- линейно зависимая подсистема, среди которых хотя бы одно не равно нулю:

Значит, по определению 23, система линейно зависима. 

Теорема 4

Любая подсистема линейно независимой системы линейно независима.

 От противного. Пусть система линейно независима и в ней имеется линейно зависимая подсистема. Но тогда по теореме 3 вся система будет также линейно зависимой. Противоречие. Следовательно, подсистема линейно независимой системы не может быть линейно зависимой.

Геометрический смысл линейной зависимости и независимости системы векторов

Теорема 5

Два вектора илинейно зависимы тогда и только тогда, когда.

Необходимость.

и- линейно зависимы, что выполняется условие. Тогда, т.е..

Достаточность.

линейно зависимы. 

Следствие 5.1

Нулевой вектор коллинеарен любому вектору

Следствие 5.2

Для того чтобы два вектора были линейно независимы необходимо и достаточно, чтобы был не коллинеарен .

Теорема 6

Для того чтобы система из трёх векторов была линейно зависима необходимо и достаточно, чтобы эти векторы были компланарными.

Необходимость.

Линейно зависимы, следовательно, один вектор можно представить в виде линейной комбинации двух других.

где и. По правилу параллелограммаесть диагональ параллелограмма со сторонами, но параллелограмм – плоская фигуракомпланарны- тоже компланарны.

Достаточность .

Компланарны. Приложим три вектора к точке О:

– линейно зависимы

Следствие 6.1

Нулевой вектор компланарен любой паре векторов.

Следствие 6.2

Для того чтобы векторы были линейно независимы необходимо и достаточно, чтобы они были не компланарны.

Следствие 6.3

Любой вектор плоскости можно представить в виде линейной комбинации любых двух неколлинеарных векторов этой же плоскости.

Теорема 7

Любые четыре вектора в пространстве линейно зависимы.

 Рассмотрим 4 случая:

Проведем плоскость через векторы , затем плоскость через векторы и плоскость через векторы . Затем проведем плоскости, проходящие через точкуD, параллельные парам векторов ; ; соответственно. По линиям пересечения плоскостей строим параллелепипедOB 1 D 1 C 1 ABDC .

Рассмотрим OB 1 D 1 C 1 – параллелограмм по построению по правилу параллелограмма.

Рассмотрим OADD 1 – параллелограмм (из свойства параллелепипеда), тогда

EMBED Equation.3 .

По теореме 1 такие, что. Тогда, и по определению 24 система векторов линейно зависимая. 

Следствие 7.1

Суммой трёх некомпланарных векторов в пространстве является вектор, совпадающий с диагональю параллелепипеда, построенного на этих трёх векторах, приложенных к общему началу, причём начало вектора суммы совпадает с общим началом этих трёх векторов.

Следствие 7.2

Если в пространстве взять 3 некомпланарных вектора, то любой вектор этого пространства можно разложить в линейную комбинацию данных трёх векторов.

Зададим в (действительном или комплексном) систему из векторов

По определению система (1) линейно независима, если из векторного равенства

где , , ..., - числа (соответственно действительные или комплексные), следует, что

Система векторов (1) называется линейно зависимой, если существуют числа , , ..., , одновременно не равные нулю, для которых выполняется равенство (2). Если для определенности считать, что , то из (2) следует, что

Таким образом, если система из векторов линейно зависима, то один из них есть, как говорят, линейная комбинация остальных, или, как еще говорят, зависит от остальных.

Так как все время будет идти речь о линейной зависимости, то термин линейный будем позволять себе иногда опускать. Будем также говорить зависимые или независимые векторы вместо зависимая или независимая система векторов.

Один вектор тоже образует систему - линейно независимую, если , и зависимую, если .

Если система векторов линейно независима, то любая часть этой системы тем более линейно независима. Иначе нашлась бы нетривиальная система чисел ,…,, для которой выполнялось бы

но тогда для системы , ..., , , которая тоже нетривиальна, имело бы место

Из сказанного следует, что если система векторов линейно зависима то любая пополненная система

обладает тем же свойством. В частности, система векторов, содержащая в себе нулевой вектор, всегда линейно зависима.

Составим матрицу, определяемую векторами системы (1):

Теорема 1. Если ранг , т.е. ранг равен числу векторов, то система (1) линейно независима.

Если же ранг , то система (1) линейно зависима.

Пример 1. Два вектора , в действительном пространстве образуют линейно независимую систему, если определитель

потому что векторное уравнение

эквивалентно двум уравнениям для соответствующих компонент

Но если , то система (5) имеет единственное тривиальное решение

Если же , то уравнениям (5) удовлетворяет некоторая нетривиальная система , т.е. при система векторов , линейно зависима.

Очевидно, сказать, что в действительном пространстве векторы и коллинеарны или линейно зависимы - это все равно. Но тогда сказать, что векторы и не коллинеарны или линейно независимы - это тоже все равно.

Пример 2. Система векторов , , ...., в действительном пространстве всегда линейно зависима. Геометрически это ясно из рис. 33: если произвольный вектор и , - неколлинеарные векторы, то всегда можно указать такие числа , , что

Это показывает, что система , , линейно зависима. Если же и - коллинеарные векторы, то они линейно зависимы. Тем более линейно зависимы , , .

По теореме 1, чтобы исследовать пару векторов , , мы должны записать матрицу из их координат

В данном случае .

а) Если ранг , то теорема утверждает, что векторы , линейно зависимы.

б) Если же ранг , то векторы , линейно независимы.

Это совпадает с приведенными выводами, потому что в случае а) и б).

Тот факт, что три произвольных вектора , , в линейно зависимы, тоже предусмотрен теоремой - ведь ранг

Пример 3. В трехмерном действительном пространстве два вектора

линейно зависимы тогда и только тогда, когда они коллинеарны.

В самом деле, пусть , коллинеарны. Если один из данных векторов нулевой, то они линейно зависимы. Если же и коллинеарны и не нулевые, то

где - некоторое число. Последнее означает, что , линейно зависимы.

Обратно, если , линейно зависимы, то один из них зависит от другого, например

т.е. векторы коллинеарны.

Если в этом случае рассмотреть матрицу

то элементы строк матрицы пропорциональны, и поэтому

т.е. наше утверждение согласуется с теоремой 1.

Пример 4. Рассмотрим теперь три вектора в :

Векторному уравнению

эквивалентна система из трех уравнений

Если , то система (7") имеет единственное тривиальное решение . Но тогда и уравнение (7) имеет единственное тривиальное решение и система векторов , , , линейно независима.

Если , то система (7"), следовательно, и уравнение (7) имеют нетривиальное решение (). Но тогда система векторов (, , ) линейно зависима. Но здесь можно различать детали:

1) Пусть ранг, где

Тогда по крайней мере одна из строк , пусть для определенности первая, имеет хотя бы один элемент, не равный нулю. Рассмотрим матрицу

Она имеет ранг 1, поэтому все порождаемые ею определители второго порядка равны нулю

Но тогда, очевидно, компоненты векторов и пропорциональны.

Аналогично, учитывая, что в матрице

тоже все определители второго порядка равны нулю, получим, что

где - некоторое число. Таким образом, в этом случае векторы , , коллинеарны.

2) Пусть теперь ранг . Тогда одна из матриц, состоящих из двух строк матрицы , имеет ранг 2. Пусть для определенности это есть матрица (см. (8)). На основании примера 3 векторы и , линейно независимы. Но система , , зависима, т. е. для некоторой нетривиальной тройки чисел ()

Здесь , потому что иначе , и в силу независимости системы , было бы . Но тогда равенство (9) можно разрешить относительно :

Таким образом, если , а ранг (см. (8)), то векторы и неколлинеарны, а вектор , принадлежит к плоскости этих векторов.. Существует не равный нулю определитель уравнений системы (2") удовлетворяются найденными числами (см.(11)) и произвольными числами . На основании утверждения 2) §4 (правила решения систем) числа удовлетворяют и остальным уравнениям системы (2"), т. е. числа , (не все равные нулю) удовлетворяют остальным уравнениям системы (2").

Таким образом, векторы линейно зависимы, и теорема доказана и в этом случае.

Важнейшим понятием в теории линейных пространств является линейная зависимость векторов. Прежде чем определить это понятие, рассмотрим несколько примеров.

Примеры. 1. Дана следующая система трех векторов из пространства Тк:

Легко заметить, что или

2. Возьмем теперь другую систему векторов из

Соотношение, аналогичное равенству (1), для этой системы векторов непосредственно усмотреть затруднительно. Однако нетрудно проверить, что

Коэффициенты 4, -7,5 соотношения (2) можно было бы найти следующим образом. Обозначим их через считая неизвестными, будем решать векторное уравнение:

Произведя указанные операции умножения и сложения и переходя к равенству компонент векторов в (2), получаем однородную систему линейных уравнений относительно

Одним из решений этой системы является:

3. Рассмотрим систему векторов:

Равенство

приводит к системе уравнений, имеющей единственное - нулевое - решение. (Проверьте!) Таким образом, из равенства (3) следует,

что Иначе говоря, равенство (3) выполняется только при

Системы векторов в примерах 1-2 являются линейно зависимыми, система примера 3 - линейно независимой.

Определение 3. Система векторов линейного пространства над полем называется линейно зависимой, если существуют не все равные нулю числа поля Я, такие, что

Если же для векторов равенство имеет место только при то система векторов называется линейно независимой.

Заметим, что свойство линейной зависимости и независимости является свойством системы векторов. Однако в литературе широко используют те же прилагательные в применении непосредственно к самим векторам и говорят, допуская вольность речи, «система линейно независимых векторов» и даже «векторы линейно независимы».

Если в системе имеется всего один вектор а, то при по свойству 6 (§ 2) из следует Значит, система, состоящая из одного ненулевого вектора, линейно независима. Напротив, любая система векторов содержащая нулевой вектор 0, линейно зависима. Например, если то

Если система двух векторов линейно зависима, то имеет место равенство при (или . Тогда

т. е. векторы пропорциональны. Верно и обратное, так как из следует Значит, система двух векторов линейно зависима тогда и только тогда, когда векторы пропорциональны.

Пропорциональные векторы из лежат на одной прямой; в связи с этим и в общем случае пропорциональные векторы иногда называют коллинеарными.

Отметим некоторые свойства линейной зависимости векторов.

Свойство 1. Система векторов, содержащая линейно зависимую подсистему, линейно зависима.

Пусть линейно зависима подсистема

Тогда существуют не все равные нулю числа такие, что

Добавив в левую часть этого равенства остальные векторы данной системы с нулевыми коэффициентами, получим требуемое.

Из свойства 1 следует, что всякая подсистема линейно независимой системы векторов линейно независима.

Свойство 2. Если система векторов

линейно независима, а система векторов

линейно зависима, то вектор линейно выражается через векторы системы (4).

Так как система векторов (5) линейно зависима, то существуют не все равные нулю числа такие, что

Если то и тогда ненулевые коэффициенты будут среди что означало бы линейную зависимость системы (4). Значит, и

Свойство 3. Упорядоченная система ненулевых векторов

линейно зависима тогда и только тогда, когда некоторый вектор является линейной комбинацией предшествующих векторов.

Пусть система линейно зависима. Так как то вектор линейно независим. Обозначим через наименьшее натуральное число, при котором система линейно зависима. (Такое существует: в крайнем случае, если системы линейно независимы, то Тогда существуют не все равные нулю числа такие, что выполняется равенство

Если бы то ненулевые коэффициенты были бы среди и выполнялось бы равенство

что означало бы линейную зависимость системы но это противоречило бы выбору числа Значит, и потому

Обратно, из равенства (7) по свойству 1 следует линейная зависимость системы

Из свойства 3 легко следует, что система векторов тогда и только тогда линейно зависима, когда хотя бы один ее вектор линейно выражается через остальные. В этом смысле и говорят, что понятие линейной зависимости эквивалентно понятию линейной выражаемости.

Свойство 4. Если вектор х линейно выражается через векторы системы

а вектор линейно выражается через остальные векторы системы (8), то вектор также линейно выражается через эти векторы системы (8).

В самом деле,

Теперь можно доказать одну из важнейших теорем о линейной зависимости векторов.

Теорема 1. Если каждый вектор линейно независимой системы

есть линейная комбинация векторов

то Другими словами, в линейно независимой системе векторов, являющихся линейными комбинациями векторов число векторов не может быть больше

Доказательство. 1-й шаг. Построим систему

По условию каждый вектор системы (9), в частности вектор линейно выражается через векторы (10), а потому система (11) линейно зависима. По свойству 3 в системе (11) некоторый вектор где линейно выражается через предшествующие векторы, а потому и через векторы системы

полученной из (11) удалением вектора Отсюда по свойству 4 имеем: каждый вектор системы (9) линейно выражается через векторы системы (12).

2-й шаг. Применяя те же рассуждения, что и на шаге, к системам векторов

и (12) и учитывая, что система векторов линейно независима, мы получим систему векторов

через которые линейно выражаются все векторы системы (9).

Если допустить, что то, продолжая этот процесс, мы через шагов исчерпаем все векторы и получим систему

такую, что каждый вектор системы (9), в частности линейно выражается через векторы системы (14). Тогда система (9) оказывается линейно зависимой, что противоречит условию. Остается принять, что

Рассмотрим теперь, что означает линейная зависимость векторов в различных пространствах.

1. Пространство Если система двух векторов линейно зависима, то или т. е. векторы коллинеарны. Верно и обратное. Система трех векторов пространства линейно зависима тогда и только тогда, когда они лежат в одной плоскости. (Докажите!) Система четырех векторов пространства всегда линейно зависима. В самом деле, если какая-либо подсистема нашей системы линейно зависима, то и вся система линейно зависима. Если же никакая собственная подсистема не является линейно зависимой, то по предыдущему это означает, что никакие три вектора нашей системы не лежат на одной плоскости. Тогда из геометрических соображений следует существование вещественных чисел таких, что параллелепипед с ребрами-векторами будет иметь диагональ т. е. в равенстве



Случайные статьи