Теорема виета для квадратного уравнения примеры. Теорема виета для квадратных и других уравнений

Формулировка и доказательство теоремы Виета для квадратных уравнений. Обратная теорема Виета. Теорема Виета для кубических уравнений и уравнений произвольного порядка.

Квадратные уравнения

Теорема Виета

Пусть и обозначают корни приведенного квадратного уравнения
(1) .
Тогда сумма корней равна коэффициенту при , взятому с обратным знаком. Произведение корней равно свободному члену:
;
.

Замечание по поводу кратных корней

Если дискриминант уравнения (1) равен нулю, то это уравнение имеет один корень. Но, чтобы избежать громоздких формулировок, принято считать, что в этом случае, уравнение (1) имеет два кратных, или равных, корня:
.

Доказательство первое

Найдем корни уравнения (1). Для этого применим формулу для корней квадратного уравнения :
;
;
.

Находим сумму корней:
.

Чтобы найти произведение, применим формулу:
.
Тогда

.

Теорема доказана.

Доказательство второе

Если числа и являются корнями квадратного уравнения (1), то
.
Раскрываем скобки.

.
Таким образом, уравнение (1) примет вид:
.
Сравнивая с (1) находим:
;
.

Теорема доказана.

Обратная теорема Виета

Пусть и есть произвольные числа. Тогда и являются корнями квадратного уравнения
,
где
(2) ;
(3) .

Доказательство обратной теоремы Виета

Рассмотрим квадратное уравнение
(1) .
Нам нужно доказать, что если и , то и являются корнями уравнения (1).

Подставим (2) и (3) в (1):
.
Группируем члены левой части уравнения:
;
;
(4) .

Подставим в (4) :
;
.

Подставим в (4) :
;
.
Уравнение выполняется. То есть число является корнем уравнения (1).

Теорема доказана.

Теорема Виета для полного квадратного уравнения

Теперь рассмотрим полное квадратное уравнение
(5) ,
где , и есть некоторые числа. Причем .

Разделим уравнение (5) на :
.
То есть мы получили приведенное уравнение
,
где ; .

Тогда теорема Виета для полного квадратного уравнения имеет следующий вид.

Пусть и обозначают корни полного квадратного уравнения
.
Тогда сумма и произведение корней определяются по формулам:
;
.

Теорема Виета для кубического уравнения

Аналогичным образом мы можем установить связи между корнями кубического уравнения. Рассмотрим кубическое уравнение
(6) ,
где , , , есть некоторые числа. Причем .
Разделим это уравнение на :
(7) ,
где , , .
Пусть , , есть корни уравнения (7) (и уравнения (6)). Тогда

.

Сравнивая с уравнением (7) находим:
;
;
.

Теорема Виета для уравнения n-й степени

Тем же способом можно найти связи между корнями , , ... , , для уравнения n-й степени
.

Теорема Виета для уравнения n-й степени имеет следующий вид:
;
;
;

.

Чтобы получить эти формулы мы записываем уравнение в следующем виде:
.
Затем приравниваем коэффициенты при , , , ... , и сравниваем свободный член.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
С.М. Никольский, М.К. Потапов и др., Алгебра: учебник для 8 класса общеобразовательных учреждений, Москва, Просвещение, 2006.

С помощью этой математической программы вы можете решить квадратное уравнение .

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
- с помощью дискриминанта
- с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения \(81x^2-16x-1=0\) ответ выводится в такой форме:

$$ x_1 = \frac{8+\sqrt{145}}{81}, \quad x_2 = \frac{8-\sqrt{145}}{81} $$ а не в такой: \(x_1 = 0,247; \quad x_2 = -0,05 \)

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

Правила ввода квадратного многочлена

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5z +1/7z^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} z + \frac{1}{7}z^2 \)

При вводе выражения можно использовать скобки . В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)


=0
Решить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac{4}{9}=0 \)
имеет вид
\(ax^2+bx+c=0, \)
где x - переменная, a, b и c - числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = -7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями .

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x - переменная, a, b и c - некоторые числа, причём \(a \neq 0 \).

Числа a, b и c - коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b - вторым коэффициентом и число c - свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где \(a \neq 0 \), наибольшая степень переменной x - квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением . Например, приведёнными квадратными уравнениями являются уравнения
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением . Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 - неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где \(c \neq 0 \);
2) ax 2 +bx=0, где \(b \neq 0 \);
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при \(c \neq 0 \) переносят его свободный член в правую часть и делят обе части уравнения на a:
\(x^2 = -\frac{c}{a} \Rightarrow x_{1,2} = \pm \sqrt{ -\frac{c}{a}} \)

Так как \(c \neq 0 \), то \(-\frac{c}{a} \neq 0 \)

Если \(-\frac{c}{a}>0 \), то уравнение имеет два корня.

Если \(-\frac{c}{a} Для решения неполного квадратного уравнения вида ax 2 +bx=0 при \(b \neq 0 \) раскладывают его левую часть на множители и получают уравнение
\(x(ax+b)=0 \Rightarrow \left\{ \begin{array}{l} x=0 \\ ax+b=0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x=0 \\ x=-\frac{b}{a} \end{array} \right. \)

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при \(b \neq 0 \) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
\(x^2+\frac{b}{a}x +\frac{c}{a}=0 \)

Преобразуем это уравнение, выделив квадрат двучлена:
\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2- \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0 \Rightarrow \)

\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a} \Rightarrow \) \(\left(x+\frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} \Rightarrow \left(x+\frac{b}{2a}\right)^2 = \frac{b^2-4ac}{4a^2} \Rightarrow \) \(x+\frac{b}{2a} = \pm \sqrt{ \frac{b^2-4ac}{4a^2} } \Rightarrow x = -\frac{b}{2a} + \frac{ \pm \sqrt{b^2-4ac} }{2a} \Rightarrow \) \(x = \frac{ -b \pm \sqrt{b^2-4ac} }{2a} \)

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни - различитель). Его обозначают буквой D, т.е.
\(D = b^2-4ac \)

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
\(x_{1,2} = \frac{ -b \pm \sqrt{D} }{2a} \), где \(D= b^2-4ac \)

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень \(x=-\frac{b}{2a} \).
3) Если D Таким образом, в зависимости от значения дискриминанта квадратное уравнение может иметь два корня (при D > 0), один корень (при D = 0) или не иметь корней (при D При решении квадратного уравнения по данной формуле целесообразно поступать следующим образом:
1) вычислить дискриминант и сравнить его с нулём;
2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней, если дискриминант отрицателен, то записать, что корней нет.

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x 1 и x 2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
\(\left\{ \begin{array}{l} x_1+x_2=-p \\ x_1 \cdot x_2=q \end{array} \right. \)

В этой лекции мы познакомимся с любопытными соотношениями между корнями квадратного уравнения и его коэффициентами. Эти соотношения впервые обнаружил французский математик Франсуа Виет (1540—1603).

Например, для уравнения Зx 2 - 8x - 6 = 0, не находя его корней, можно, воспользовавшись теоремой Виета, сразу сказать, что сумма корней равна , а произведение корней равно
т. е. - 2. А для уравнения х 2 - 6х + 8 = 0 заключаем: сумма корней равна 6, произведение корней равно 8; между прочим, здесь нетрудно догадаться, чему равны корни: 4 и 2.
Доказательство теоремы Виета. Корни х 1 и х 2 квадратного уравнения ах 2 + bх + с = 0 находятся по формулам

Где D = b 2 — 4ас — дискриминант уравнения. Сложив эти корни,
получим


Теперь вычислим произведение корней х 1 и х 2 Имеем

Второе соотношение доказано:
Замечание. Теорема Виета справедлива и в том случае, когда квадратное уравнение имеет один корень (т. е. когда D = 0), просто в этом случае считают, что уравнение имеет два одинаковых корня, к которым и применяют указанные выше соотношения.
Особенно простой вид принимают доказанные соотношения для приведенного квадратного уравнения х 2 + рх + q = 0. В этом случае получаем:

x 1 = x 2 = -p, x 1 x 2 =q
т.е. сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
С помощью теоремы Виета можно получить и другие соотношения между корнями и коэффициентами квадратного уравнения. Пусть, например, х 1 и х 2 — корни приведенного квадратного уравнения х 2 + рх + q = 0. Тогда

Однако основное назначение теоремы Виета не в том, что она выражает некоторые соотношения между корнями и коэффициентами квадратного уравнения. Гораздо важнее то, что с помощью теоремы Виета выводится формула разложения квадратного трехчлена на множители, без которой мы в дальнейшем не обойдемся.


Доказательство. Имеем


Пример 1 . Разложить на множители квадратный трехчлен Зх 2 - 10x + 3.
Решение. Решив уравнение Зх 2 - 10x + 3 = 0, найдем корни квадратного трехчлена Зх 2 - 10x + 3: х 1 = 3, х2 = .
Воспользовавшись теоремой 2, получим

Есть смысл вместо написать Зx - 1. Тогда окончательно получим Зх 2 - 10x + 3 = (х - 3)(3х - 1).
Заметим, что заданный квадратный трехчлен можно разложить на множители и без применения теоремы 2, использовав способ группировки:

Зх 2 - 10x + 3 = Зх 2 - 9х - х + 3 =
= Зх (х - 3) - (х - 3) = (х - 3) (Зx - 1).

Но, как видите, при этом способе успех зависит от того, сумеем ли мы найти удачную группировку или нет, тогда как при первом способе успех гарантирован.
Пример 1 . Сократить дробь

Решение. Из уравнения 2х 2 + 5х + 2 = 0 находим х 1 = - 2,


Из уравнения х2 - 4х - 12 = 0 находим х 1 = 6, х 2 = -2. Поэтому
х 2 - 4х - 12 = (х- 6) (х - (- 2)) = (х - 6) (х + 2).
А теперь сократим заданную дробь:

Пример 3 . Разложить на множители выражения:
а)x4 + 5x 2 +6; б)2x+-3
Р е ш е н и е. а) Введем новую переменную у = х 2 . Это позволит переписать заданное выражение в виде квадратного трехчлена относительно переменной у, а именно в виде у 2 + bу + 6.
Решив уравнение у 2 + bу + 6 = 0, найдем корни квадратного трехчлена у 2 + 5у + 6: у 1 = - 2, у 2 = -3. Теперь воспользуемся теоремой 2; получим

у 2 + 5у + 6 = (у + 2) (у + 3).
Осталось вспомнить, что у = x 2 , т. е. вернуться к заданному выражению. Итак,
x 4 + 5х 2 + 6 = (х 2 + 2)(х 2 + 3).
б) Введем новую переменную у = . Это позволит переписать заданное выражение в виде квадратного трехчлена относительно переменной у, а именно в виде 2у 2 + у - 3. Решив уравнение
2у 2 + у - 3 = 0, найдем корни квадратного трехчлена 2у 2 + у - 3:
y 1 = 1, y 2 = . Далее, используя теорему 2, получим:

Осталось вспомнить, что у = , т. е. вернуться к заданному выражению. Итак,

В заключение параграфа — некоторые рассуждения, опятьтаки связанные с теоремой Виета, а точнее, с обратным утверждением:
если числа х 1 , х 2 таковы, что х 1 + х 2 = - р, x 1 x 2 = q, то эти числа — корни уравнения
С помощью этого утверждения можно решать многие квадратные уравнения устно, не пользуясь громоздкими формулами корней, а также составлять квадратные уравнения с заданными корнями. Приведем примеры.

1) х 2 - 11х + 24 = 0. Здесь x 1 + х 2 = 11, х 1 х 2 = 24. Нетрудно догадаться, что х 1 = 8, х 2 = 3.

2) х 2 + 11х + 30 = 0. Здесь x 1 + х 2 = -11, х 1 х 2 = 30. Нетрудно догадаться, что х 1 = -5, х 2 = -6.
Обратите внимание: если свободный член уравнения — положительное число, то оба корня либо положительны, либо отрицательны; это важно учитывать при подборе корней.

3) х 2 + х - 12 = 0. Здесь x 1 + х 2 = -1, х 1 х 2 = -12. Легко догадаться, что х 1 = 3, х2 = -4.
Обратите внимание: если свободный член уравнения — отрицательное число, то корни различны по знаку; это важно учитывать при подборе корней.

4) 5х 2 + 17x - 22 = 0. Нетрудно заметить, что х = 1 удовлетворяет уравнению, т.е. х 1 = 1 — корень уравнения. Так как х 1 х 2 = -, а х 1 = 1, то получаем, что х 2 = - .

5) х 2 - 293x + 2830 = 0. Здесь х 1 + х 2 = 293, х 1 х 2 = 2830. Если обратить внимание на то, что 2830 = 283 . 10, а 293 = 283 + 10, то становится ясно, что х 1 = 283, х 2 = 10 (а теперь представьте, какие вычисления пришлось бы выполнить для решения этого квадратного уравнения с помощью стандартных формул).

6) Составим квадратное уравнение так, чтобы его корнями служили числа х 1 = 8, х 2 = - 4. Обычно в таких случаях составляют приведенное квадратное уравнение х 2 + рх + q = 0.
Имеем х 1 + х 2 = -р, поэтому 8 - 4 = -р, т. е. р = -4. Далее, х 1 х 2 = q, т.е. 8«(-4) = q, откуда получаем q = -32. Итак, р = -4, q = -32, значит, искомое квадратное уравнение имеет вид х 2 -4х-32 = 0.

В квадратных уравнениях существует целый ряд соотношений. Основными являются отношения между корнями и коэффициентами. Также в квадратных уравнениях работает ряд соотношений, которые задаются теоремой Виета.

В этой теме мы приведем саму теорему Виета и ее доказательство для квадратного уравнения, теорему, обратную теореме Виета, разберем ряд примеров решения задач. Особое внимание в материале мы уделим рассмотрению формул Виета, которые задают связь между действительными корнями алгебраического уравнения степени n и его коэффициентами.

Yandex.RTB R-A-339285-1

Формулировка и доказательство теоремы Виета

Формула корней квадратного уравнения a · x 2 + b · x + c = 0 вида x 1 = - b + D 2 · a , x 2 = - b - D 2 · a , где D = b 2 − 4 · a · c , устанавливает соотношения x 1 + x 2 = - b a , x 1 · x 2 = c a . Это подтверждает и теорема Виета.

Теорема 1

В квадратном уравнении a · x 2 + b · x + c = 0 , где x 1 и x 2 – корни, сумма корней будет равна соотношению коэффициентов b и a , которое было взято с противоположным знаком, а произведение корней будет равно отношению коэффициентов c и a , т. е. x 1 + x 2 = - b a , x 1 · x 2 = c a .

Доказательство 1

Предлагаем вам следующую схему проведения доказательства: возьмем формулу корней, составим суму и произведение корней квадратного уравнения и затем преобразуем полученные выражения для того, чтобы убедиться, что они равны - b a и c a соответственно.

Составим сумму корней x 1 + x 2 = - b + D 2 · a + - b - D 2 · a . Приведем дроби к общему знаменателю - b + D 2 · a + - b - D 2 · a = - b + D + - b - D 2 · a . Раскроем скобки в числителе полученной дроби и приведем подобные слагаемые: - b + D + - b - D 2 · a = - b + D - b - D 2 · a = - 2 · b 2 · a . Сократим дробь на: 2 - b a = - b a .

Так мы доказали первое соотношение теоремы Виета, которое относится к сумме корней квадратного уравнения.

Теперь давайте перейдем ко второму соотношению.

Для этого нам необходимо составить произведение корней квадратного уравнения: x 1 · x 2 = - b + D 2 · a · - b - D 2 · a .

Вспомним правило умножения дробей и запишем последнее произведение следующим образом: - b + D · - b - D 4 · a 2 .

Проведем в числителе дроби умножение скобки на скобку или же воспользуемся формулой разности квадратов для того, чтобы преобразовать это произведение быстрее: - b + D · - b - D 4 · a 2 = - b 2 - D 2 4 · a 2 .

Воспользуемся определением квадратного корня для того, чтобы осуществить следующий переход: - b 2 - D 2 4 · a 2 = b 2 - D 4 · a 2 . Формула D = b 2 − 4 · a · c отвечает дискриминанту квадратного уравнения, следовательно, в дробь вместо D можно подставить b 2 − 4 · a · c:

b 2 - D 4 · a 2 = b 2 - (b 2 - 4 · a · c) 4 · a 2

Раскроем скобки, приведем подобные слагаемые и получим: 4 · a · c 4 · a 2 . Если сократить ее на 4 · a , то остается c a . Так мы доказали второе соотношение теоремы Виета для произведения корней.

Запись доказательства теоремы Виета может иметь весьма лаконичный вид, если опустить пояснения:

x 1 + x 2 = - b + D 2 · a + - b - D 2 · a = - b + D + - b - D 2 · a = - 2 · b 2 · a = - b a , x 1 · x 2 = - b + D 2 · a · - b - D 2 · a = - b + D · - b - D 4 · a 2 = - b 2 - D 2 4 · a 2 = b 2 - D 4 · a 2 = = D = b 2 - 4 · a · c = b 2 - b 2 - 4 · a · c 4 · a 2 = 4 · a · c 4 · a 2 = c a .

При дискриминанте квадратного уравнения равном нулю уравнение будет иметь только один корень. Чтобы иметь возможность применить к такому уравнению теорему Виета, мы можем предположить, что уравнение при дискриминанте, равном нулю, имеет два одинаковых корня. Действительно, при D = 0 корень квадратного уравнения равен: - b 2 · a , тогда x 1 + x 2 = - b 2 · a + - b 2 · a = - b + (- b) 2 · a = - 2 · b 2 · a = - b a и x 1 · x 2 = - b 2 · a · - b 2 · a = - b · - b 4 · a 2 = b 2 4 · a 2 , а так как D = 0 , то есть, b 2 - 4 · a · c = 0 , откуда b 2 = 4 · a · c , то b 2 4 · a 2 = 4 · a · c 4 · a 2 = c a .

Чаще всего на практике теорема Виета применяется по отношению к приведенному квадратному уравнению вида x 2 + p · x + q = 0 , где старший коэффициент a равен 1 . В связи с этим и формулируют теорему Виета именно для уравнений такого вида. Это не ограничивает общности в связи с тем, что любое квадратное уравнение может быть заменено равносильным уравнением. Для этого необходимо поделить обе его части на число a , отличное от нуля.

Приведем еще одну формулировку теоремы Виета.

Теорема 2

Сумма корней в приведенном квадратном уравнении x 2 + p · x + q = 0 будет равна коэффициенту при x , который взят с противоположным знаком, произведение корней будет равно свободному члену, т.е. x 1 + x 2 = − p , x 1 · x 2 = q .

Теорема, обратная теореме Виета

Если внимательно посмотреть на вторую формулировку теоремы Виета, то можно увидеть, что для корней x 1 и x 2 приведенного квадратного уравнения x 2 + p · x + q = 0 будут справедливы соотношения x 1 + x 2 = − p , x 1 · x 2 = q . Из этих соотношений x 1 + x 2 = − p , x 1 · x 2 = q следует, что x 1 и x 2 – это корни квадратного уравнения x 2 + p · x + q = 0 . Так мы приходим к утверждению, которое является обратным теореме Виета.

Предлагаем теперь оформить это утверждение как теорему и провести ее доказательство.

Теорема 3

Если числа x 1 и x 2 таковы, что x 1 + x 2 = − p и x 1 · x 2 = q , то x 1 и x 2 являются корнями приведенного квадратного уравнения x 2 + p · x + q = 0 .

Доказательство 2

Замена коэффициентов p и q на их выражение через x 1 и x 2 позволяет преобразовать уравнение x 2 + p · x + q = 0 в равносильное ему .

Если в полученное уравнение подставить число x 1 вместо x , то мы получим равенство x 1 2 − (x 1 + x 2) · x 1 + x 1 · x 2 = 0 . Это равенство при любых x 1 и x 2 превращается в верное числовое равенство 0 = 0 , так как x 1 2 − (x 1 + x 2) · x 1 + x 1 · x 2 = x 1 2 − x 1 2 − x 2 · x 1 + x 1 · x 2 = 0 . Это значит, что x 1 – корень уравнения x 2 − (x 1 + x 2) · x + x 1 · x 2 = 0 , и что x 1 также является корнем равносильного ему уравнения x 2 + p · x + q = 0 .

Подстановка в уравнение x 2 − (x 1 + x 2) · x + x 1 · x 2 = 0 числа x 2 вместо x позволяет получить равенство x 2 2 − (x 1 + x 2) · x 2 + x 1 · x 2 = 0 . Это равенство можно считать верным, так как x 2 2 − (x 1 + x 2) · x 2 + x 1 · x 2 = x 2 2 − x 1 · x 2 − x 2 2 + x 1 · x 2 = 0 . Получается, что x 2 является корнем уравнения x 2 − (x 1 + x 2) · x + x 1 · x 2 = 0 , а значит, и уравнения x 2 + p · x + q = 0 .

Теорема, обратная теореме Виета, доказана.

Примеры использования теоремы Виета

Давайте теперь приступим к разбору наиболее типичных примеров по теме. Начнем с разбора задач, которые требуют применения теоремы, обратной теореме Виета. Ее можно применять для проверки чисел, полученных в ходе вычислений, на предмет того, являются ли они корнями заданного квадратного уравнения. Для этого необходимо вычислить их сумму и разность, а затем проверить справедливость соотношений x 1 + x 2 = - b a , x 1 · x 2 = a c .

Выполнение обоих соотношений свидетельствует о том, что числа, полученные в ходе вычислений, являются корнями уравнения. Если же мы видим, что хотя бы одно из условий не выполняется, то данные числа не могут быть корнями квадратного уравнения, данного в условии задачи.

Пример 1

Какая из пар чисел 1) x 1 = − 5 , x 2 = 3 , или 2) x 1 = 1 - 3 , x 2 = 3 + 3 , или 3) x 1 = 2 + 7 2 , x 2 = 2 - 7 2 является парой корней квадратного уравнения 4 · x 2 − 16 · x + 9 = 0 ?

Решение

Найдем коэффициенты квадратного уравнения 4 · x 2 − 16 · x + 9 = 0 . Это a = 4 , b = − 16 , c = 9 . В соответствии с теоремой Виета сумма корней квадратного уравнения должна быть равна - b a , то есть, 16 4 = 4 , а произведение корней должно быть равно c a , то есть, 9 4 .

Проверим полученные числа, вычислив сумму и произведение чисел из трех заданных пар и сравнив их с полученными значениями.

В первом случае x 1 + x 2 = − 5 + 3 = − 2 . Это значение отлично от 4 , следовательно, проверку можно не продолжать. Согласно теореме, обратной теореме Виета, можно сразу сделать вывод о том, что первая пара чисел не является корнями данного квадратного уравнения.

Во втором случае x 1 + x 2 = 1 - 3 + 3 + 3 = 4 . Мы видим, что первое условие выполняется. А вот второе условие нет: x 1 · x 2 = 1 - 3 · 3 + 3 = 3 + 3 - 3 · 3 - 3 = - 2 · 3 . Значение, которое мы получили, отлично от 9 4 . Это значит, что вторая пара чисел не является корнями квадратного уравнения.

Перейдем к рассмотрению третьей пары. Здесь x 1 + x 2 = 2 + 7 2 + 2 - 7 2 = 4 и x 1 · x 2 = 2 + 7 2 · 2 - 7 2 = 2 2 - 7 2 2 = 4 - 7 4 = 16 4 - 7 4 = 9 4 . Выполняются оба условия, а это значит, что x 1 и x 2 являются корнями заданного квадратного уравнения.

Ответ: x 1 = 2 + 7 2 , x 2 = 2 - 7 2

Мы также можем использовать теорему, обратную теореме Виета, для подбора корней квадратного уравнения. Наиболее простой способ – это подбор целых корней приведенных квадратных уравнений с целыми коэффициентами. Можно рассматривать и другие варианты. Но это может существенно затруднить проведение вычислений.

Для подбора корней мы используем тот факт, что если сумма двух чисел равна второму коэффициенту квадратного уравнения, взятому со знаком минус, а произведение этих чисел равно свободному члену, то эти числа являются корнями данного квадратного уравнения.

Пример 2

В качестве примера используем квадратное уравнение x 2 − 5 · x + 6 = 0 . Числа x 1 и x 2 могут быть корнями этого уравнения в том случае, если выполняются два равенства x 1 + x 2 = 5 и x 1 · x 2 = 6 . Подберем такие числа. Это числа 2 и 3 , так как 2 + 3 = 5 и 2 · 3 = 6 . Получается, что 2 и 3 – корни данного квадратного уравнения.

Теорему, обратную теореме Виета, можно использовать для нахождения второго корня, когда первый известен или очевиден. Для этого мы можем использовать соотношения x 1 + x 2 = - b a , x 1 · x 2 = c a .

Пример 3

Рассмотрим квадратное уравнение 512 · x 2 − 509 · x − 3 = 0 . Необходимо найти корни данного уравнения.

Решение

Первым корнем уравнения является 1 , так как сумма коэффициентов этого квадратного уравнения равна нулю. Получается, что x 1 = 1 .

Теперь найдем второй корень. Для этого можно использовать соотношение x 1 · x 2 = c a . Получается, что 1 · x 2 = − 3 512 , откуда x 2 = - 3 512 .

Ответ: корни заданного в условии задачи квадратного уравнения 1 и - 3 512 .

Подбирать корни, используя теорему, обратную теореме Виета, можно лишь в простых случаях. В остальных случаях лучше проводить поиск с использованием формулы корней квадратного уравнения через дискриминант.

Благодаря теореме, обратной теореме Виета, мы также можем составлять квадратные уравнения по имеющимся корням x 1 и x 2 . Для этого нам необходимо вычислить сумму корней, которая дает коэффициент при x с противоположным знаком приведенного квадратного уравнения, и произведение корней, которое дает свободный член.

Пример 4

Напишите квадратное уравнение, корнями которого являются числа − 11 и 23 .

Решение

Примем, что x 1 = − 11 и x 2 = 23 . Сумма и произведение данных чисел будут равны: x 1 + x 2 = 12 и x 1 · x 2 = − 253 . Это значит, что второй коэффициент - 12 , свободный член − 253.

Составляем уравнение: x 2 − 12 · x − 253 = 0 .

Ответ : x 2 − 12 · x − 253 = 0 .

Мы можем использовать теорему Виета для решения заданий, которые связаны со знаками корней квадратных уравнений. Связь между теоремой Виета связана со знаками корней приведенного квадратного уравнения x 2 + p · x + q = 0 следующим образом:

  • если квадратное уравнение имеет действительные корни и если свободный член q является положительным числом, то эти корни будут иметь одинаковый знак « + » или « - » ;
  • если квадратное уравнение имеет корни и если свободный член q является отрицательным числом, то один корень будет « + » , а второй « - » .

Оба этих утверждения являются следствием формулы x 1 · x 2 = q и правила умножения положительных и отрицательных чисел, а также чисел с разными знаками.

Пример 5

Являются ли корни квадратного уравнения x 2 − 64 · x − 21 = 0 положительными?

Решение

По теореме Виета корни данного уравнения не могут быть оба положительными, так как для них должно выполняться равенство x 1 · x 2 = − 21 . Это невозможно при положительных x 1 и x 2 .

Ответ: Нет

Пример 6

При каких значениях параметра r квадратное уравнение x 2 + (r + 2) · x + r − 1 = 0 будет иметь два действительных корня с разными знаками.

Решение

Начнем с того, что найдем значения каких r , при которых в уравнении будет два корня. Найдем дискриминант и посмотрим, при каких r он будет принимать положительные значения. D = (r + 2) 2 − 4 · 1 · (r − 1) = r 2 + 4 · r + 4 − 4 · r + 4 = r 2 + 8 . Значение выражения r 2 + 8 положительно при любых действительных r , следовательно, дискриминант будет больше нуля при любых действительных r . Это значит, что исходное квадратное уравнение будет иметь два корня при любых действительных значениях параметра r .

Теперь посмотрим, когда корни будут иметь разные знаки. Это возможно в том случае, если их произведение будет отрицательным. Согласно теореме Виета произведение корней приведенного квадратного уравнения равно свободному члену. Значит, правильным решением будут те значения r , при которых свободный член r − 1 отрицателен. Решим линейное неравенство r − 1 < 0 , получаем r < 1 .

Ответ: при r < 1 .

Формулы Виета

Существует ряд формул, которые применимы для осуществления действий с корнями и коэффициентами не только квадратных, но также кубических и других видов уравнений. Их называют формулами Виета.

Для алгебраического уравнения степени n вида a 0 · x n + a 1 · x n - 1 + . . . + a n - 1 · x + a n = 0 считается, что уравнение имеет n действительных корней x 1 , x 2 , … , x n , среди которых могут быть совпадающие:
x 1 + x 2 + x 3 + . . . + x n = - a 1 a 0 , x 1 · x 2 + x 1 · x 3 + . . . + x n - 1 · x n = a 2 a 0 , x 1 · x 2 · x 3 + x 1 · x 2 · x 4 + . . . + x n - 2 · x n - 1 · x n = - a 3 a 0 , . . . x 1 · x 2 · x 3 · . . . · x n = (- 1) n · a n a 0

Определение 1

Получить формулы Виета нам помогают:

  • теорема о разложении многочлена на линейные множители;
  • определение равных многочленов через равенство всех их соответствующих коэффициентов.

Так, многочлен a 0 · x n + a 1 · x n - 1 + . . . + a n - 1 · x + a n и его разложение на линейные множители вида a 0 · (x - x 1) · (x - x 2) · . . . · (x - x n) равны.

Если мы раскрываем скобки в последнем произведении и приравниваем соответствующие коэффициенты, то получаем формулы Виета. Приняв n = 2 , мы можем получить формулу Виета для квадратного уравнения: x 1 + x 2 = - a 1 a 0 , x 1 · x 2 = a 2 a 0 .

Определение 2

Формула Виета для кубического уравнения:
x 1 + x 2 + x 3 = - a 1 a 0 , x 1 · x 2 + x 1 · x 3 + x 2 · x 3 = a 2 a 0 , x 1 · x 2 · x 3 = - a 3 a 0

Левая часть записи формул Виета содержит так называемые элементарные симметрические многочлены.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Теорема Виета часто используется для проверки уже найденных корней . Если вы нашли корни, то сможете с помощью формул \(\begin{cases}x_1+x_2=-p \\x_1 \cdot x_2=q\end{cases}\) вычислить значения \(p\) и \(q\). И если они получатся такими же как в исходном уравнении – значит корни найдены верно.

Например, пусть мы, используя , решили уравнение \(x^2+x-56=0\) и получили корни: \(x_1=7\), \(x_2=-8\). Проверим, не ошиблись ли мы в процессе решения. В нашем случае \(p=1\), а \(q=-56\). По теореме Виета имеем:

\(\begin{cases}x_1+x_2=-p \\x_1 \cdot x_2=q\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}7+(-8)=-1\\7\cdot(-8)=-56\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1=-1\\-56=-56\end{cases}\)

Оба утверждения сошлись, значит, мы решили уравнение правильно.

Такую проверку можно проводить устно. Она займет 5 секунд и убережет вас от глупых ошибок.

Обратная теорема Виета

Если \(\begin{cases}x_1+x_2=-p \\x_1 \cdot x_2=q\end{cases}\), то \(x_1\) и \(x_2\) – корни квадратного уравнения \(x^2+px+q=0\).

Или по-простому: если у вас есть уравнение вида \(x^2+px+q=0\), то решив систему \(\begin{cases}x_1+x_2=-p \\x_1 \cdot x_2=q\end{cases}\) вы найдете его корни.

Благодаря этой теореме можно быстро подобрать корни квадратного уравнения, особенно если эти корни – . Это умение важно, так как экономит много времени.


Пример . Решить уравнение \(x^2-5x+6=0\).

Решение : Воспользовавшись обратной теоремой Виета, получаем, что корни удовлетворяют условиям: \(\begin{cases}x_1+x_2=5 \\x_1 \cdot x_2=6\end{cases}\).
Посмотрите на второе уравнение системы \(x_1 \cdot x_2=6\). На какие два можно разложить число \(6\)? На \(2\) и \(3\), \(6\) и \(1\) либо \(-2\) и \(-3\), и \(-6\) и \(-1\). А какую пару выбрать, подскажет первое уравнение системы: \(x_1+x_2=5\). Походят \(2\) и \(3\), так как \(2+3=5\).
Ответ : \(x_1=2\), \(x_2=3\).


Примеры . Используя теорему, обратную теореме Виета, найдите корни квадратного уравнения:
а) \(x^2-15x+14=0\); б) \(x^2+3x-4=0\); в) \(x^2+9x+20=0\); г) \(x^2-88x+780=0\).

Решение :
а) \(x^2-15x+14=0\) – на какие множители раскладывается \(14\)? \(2\) и \(7\), \(-2\) и \(-7\), \(-1\) и \(-14\), \(1\) и \(14\). Какие пары чисел в сумме дадут \(15\)? Ответ: \(1\) и \(14\).

б) \(x^2+3x-4=0\) – на какие множители раскладывается \(-4\)? \(-2\) и \(2\), \(4\) и \(-1\), \(1\) и \(-4\). Какие пары чисел в сумме дадут \(-3\)? Ответ: \(1\) и \(-4\).

в) \(x^2+9x+20=0\) – на какие множители раскладывается \(20\)? \(4\) и \(5\), \(-4\) и \(-5\), \(2\) и \(10\), \(-2\) и \(-10\), \(-20\) и \(-1\), \(20\) и \(1\). Какие пары чисел в сумме дадут \(-9\)? Ответ: \(-4\) и \(-5\).

г) \(x^2-88x+780=0\) – на какие множители раскладывается \(780\)? \(390\) и \(2\). Они в сумме дадут \(88\)? Нет. Еще какие множители есть у \(780\)? \(78\) и \(10\). Они в сумме дадут \(88\)? Да. Ответ: \(78\) и \(10\).

Необязательно последнее слагаемое раскладывать на все возможные множители (как в последнем примере). Можно сразу проверять дает ли их сумма \(-p\).


Важно! Теорема Виета и обратная теорема работают только с , то есть таким, у которого коэффициент перед \(x^2\) равен единице. Если же у нас изначально дано не приведенное уравнение, то мы можем сделать его приведенным, просто разделив на коэффициент, стоящий перед \(x^2\).

Например , пусть дано уравнение \(2x^2-4x-6=0\) и мы хотим воспользоваться одной из теорем Виета. Но не можем, так как коэффициент перед \(x^2\) равен \(2\). Избавимся от него, разделив все уравнение на \(2\).

\(2x^2-4x-6=0\) \(|:2\)
\(x^2-2x-3=0\)

Готово. Теперь можно пользоваться обеими теоремами.

Ответы на часто задаваемые вопросы

Вопрос: По теореме Виета можно решить любые ?
Ответ: К сожалению, нет. Если в уравнении не целые или уравнение вообще не имеет корней, то теорема Виета не поможет. В этом случае надо пользоваться дискриминантом . К счастью, 80% уравнений в школьном курсе математике имеют целые решения.



Случайные статьи

Вверх