В россии собрали первый в мире ядерный космический двигатель. Новое супероружие России: что такое ядерный ракетный двигатель

Ракетный двигатель, рабочим телом в котором служит либо какое либо вещество (напр., водород), нагреваемое за счет энергии, выделяющейся при ядерной реакции или радиоактивном распаде, либо непосредственно продукты этих реакций. Различают… … Большой Энциклопедический словарь

Ракетный двигатель, рабочим телом в котором служит либо какое либо вещество (например, водород), нагреваемое за счёт энергии, выделяющейся при ядерной реакции или радиоактивном распаде, либо непосредственно продукты этих реакций. Находится в… … Энциклопедический словарь

ядерный ракетный двигатель - branduolinis raketinis variklis statusas T sritis Gynyba apibrėžtis Raketinis variklis, kuriame reaktyvinė trauka sudaroma vykstant branduolinei arba termobranduolinei reakcijai. Branduoliniams raketiniams varikliams sudaroma kur kas didesnė… … Artilerijos terminų žodynas

- (ЯРД) ракетный двигатель, в котором тяга создаётся за счёт энергии, выделяющейся при радиоактивном распаде или ядерной реакции. Соответственно типу происходящей в ЯРД ядерной реакции выделяют Радиоизотопный ракетный двигатель,… …

- (ЯРД) ракетный двигатель, в к ром источником энергии является ядерное топливо. В ЯРД с ядерным реак. тором теплота, выделяющаяся в результате цепной ядерной реакции, сообщается рабочему телу (напр., водороду). Активная зона ядерного реактора… …

Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Ядерный ракетный двигатель на гомогенном растворе солей ядерного топлива (англ. … Википедия

Ядерный ракетный двигатель (ЯРД) разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги. Бывают собственно реактивными (нагрев рабочего тела в ядерном реакторе и вывод газа через… … Википедия

Реактивный двигатель, источник энергии и рабочее тело которого находится в самом средстве передвижения. Ракетный двигатель единственный практически освоенный для вывода полезной нагрузки на орбиту искусственного спутника Земли и применения в… … Википедия

- (РД) Реактивный двигатель, использующий для своей работы только вещества и источники энергии, имеющиеся в запасе на перемещающемся аппарате (летательном, наземном, подводном). Т. о., в отличие от воздушно реактивных двигателей (См.… … Большая советская энциклопедия

Изотопный ракетный двигатель, ядерный ракетный двигатель, использующий энергию распада радиоактивных изотопов хим. элементов. Эта энергия служит для нагрева рабочего тела, либо же рабочим телом являются сами продукты распада, образующие… … Большой энциклопедический политехнический словарь

Первая стадия - отрицание

Немецкий эксперт в области ракетной техники Роберт Шмукер посчитал заявления В. Путина совершенно неправдоподобными. «Не могу представить, что россияне могут создать маленький летающий реактор», - рассказал эксперт в интервью «Дойче Велле».

Могут, герр Шмукер. Только представьте.

Первый отечественный спутник с ядерной энергоустановкой (“Космос-367”) был запущен с Байконура в далеком 1970 году. 37 тепловыделяющих сборок малогабаритного реактора БЭС-5 “Бук”, содержащих 30 кг урана, при температуре в первом контуре 700°С и тепловыделении 100 кВт обеспечивали электрическую мощность установки 3 кВт. Масса реактора - менее одной тонны, расчетное время работы 120-130 суток.

Эксперты выразят сомнение: слишком мала мощность у этой ядерной “батарейки”... Но! Вы посмотрите на дату: это было полвека назад.

Низкий КПД - следствие термоэмиссионного преобразования. При других формах передачи энергии показатели значительно выше, например у АЭС значение КПД находится в пределах 32-38%. В этом смысле особый интерес представляет тепловая мощность “космического” реактора. 100 кВт - серьезная заявка на победу.

Стоит отметить, БЭС-5 “Бук” не относится к семейству РИТЭГов. Радиоизотопные термоэлектрогенераторы преобразуют энергию естественного распада атомов радиоактивных элементов и обладают ничтожной мощностью. В то же время “Бук” - настоящий реактор с управляемой цепной реакцией.

Следующее поколение советских малогабаритных реакторов, появившихся в конце 1980-х гг., отличалось еще меньшими габаритами и большим энерговыделением. Таким был уникальный “Топаз”: по сравнению с “Буком” количество урана в реакторе сократилось втрое (до 11,5 кг). Тепловая мощность возросла на 50% и составила 150 кВт, время непрерывной работы достигло 11 месяцев (реактор данного типа был установлен на борту разведывательного спутника “Космос-1867”).


Ядерные космические реакторы - внеземная форма смерти. При потере управления “падающая звезда” не исполняла желаний, но могла отпустить “счастливчикам” их грехи.

В 1992 году два оставшихся экземпляра малогабритных реакторов серии “Топаз” были проданы в США за 13 млн. долл.

Главный вопрос: достаточно ли мощности у подобных установок для их использования в качестве ракетных двигателей? Путем пропуска рабочего тела (воздух) через горячую активную зону реактора и получения на выходе тяги по закону сохранения импульса.

Ответ: нет. “Бук” и “Топаз” - ядерные электростанции компактных размеров. Для создания ЯРД необходимы другие средства. Но общий тренд виден невооруженным глазом. Компактные ЯЭУ давно созданы и существуют на практике.

Какую мощность должна иметь ЯЭУ для применения в качестве маршевого двигателя крылатой ракеты, аналогичной по размерам Х-101?

Не можешь найти работу? Умножь время на мощность!
(Сборник универсальных советов.)

Найти мощность также не составит большого труда. N=F×V.

По официальным данным, крылатые ракеты Ха-101, как и КР семейства “Калибр”, оснащаются короткоресурсным ТРДД-50, развивающим тягу 450 кгс (≈ 4400 Н). Маршевая скорость крылатой ракеты - 0,8М, или 270 м/с. Идеальный расчетный КПД турбореактивного двухконтурного двигателя - 30%.

В этом случае потребная мощность двигателя крылатой ракеты всего в 25 раз превышает тепловую мощность реактора серии “Топаз”.

Несмотря на сомнения немецкого эксперта, создание ядерного турбореактивного (либо прямоточного) ракетного двигателя - реалистичная задача, отвечающая требованиям современности.

Ракета из ада

«Все это сюрприз - крылатая ракета с ядерными двигателями, - отметил Дуглас Барри, старший научный сотрудник Международного Института стратегических исследований в Лондоне. - Эта идея не нова, об этом говорили в 60-х, но она столкнулась с большим количеством препятствий».

Об этом не только говорили. На испытаниях в 1964 году ядерный прямоточный двигатель “Тори-IIС” развил тягу 16 тонн при тепловой мощности реактора 513 МВт. Имитируя сверхзвуковой полет, установка израсходовала за пять минут 450 тонн сжатого воздуха. Реактор проектировался очень “горячим” - рабочая температура в активной зоне достигала 1600°С. Конструкция имела очень узкие допуски: на ряде участков допустимая температура была всего на 150-200°С ниже температуры, при которых плавились и разрушались элементы ракеты.

Хватало ли этих показателей для применения ЯПВРД в качестве двигателя на практике? Ответ очевиден.

Ядерный ПВРД развил большую (!) тягу, чем турбопрямоточный двигатель “трехмахового” разведчика SR-71 “Блэк бёрд”.


"Полигон-401", испытания ядерного ПВРД

Экспериментальные установки “Тори-IIA” и “-IIC” - прототипы ядерного двигателя крылатой ракеты SLAM.

Дьявольское изобретение, способное, по расчетам, пронзить 160 000 км пространства на минимальной высоте со скоростью 3М. Буквально “выкашивая” всех, кто встречался на её скорбном пути, ударной волной и громовым раскатом в 162 дБ (смертельное значение для человека).

Реактор боевого ЛА не имел никакой биологической защиты. Разорванные после пролета SLAM барабанные перепонки показались бы незначительным обстоятельством на фоне радиоактивных выбросов из сопла ракеты. Летающее чудовище оставляло за собой шлейф шириной более километра с дозой излучения 200-300 рад. По расчетам, за один час полета SLAM заражала смертельной радиацией 1800 квадратных миль.

Согласно расчетам, длина летательного аппарата могла достигать 26 метров. Стартовая масса - 27 тонн. Боевая нагрузка - термоядерные заряды, которые требовалось последовательно сбросить на несколько советских городов, вдоль маршрута полета ракеты. После завершения основной задачи SLAM должна была еще несколько суток кружить над территорией СССР, заражая все вокруг радиоактивными выбросами.

Пожалуй, самое смертоносное из всех, которые пытался создать человек. К счастью, до реальных запусков дело не дошло.

Проект с кодовым названием “Плутон” был свернут 1 июля 1964 года. При этом, по словам одного из разработчиков SLAM, Дж. Крейвена, никто из военного и политического руководства США не сожалел о принятом решении.

Причиной отказа от “низколетящей ядерной ракеты” стало развитие межконтинентальных баллистических ракет. Способных нанести необходимый ущерб за меньшее время при несопоставимых рисках для самих военных. Как справедливо заметили авторы публикации в журнале Air&Space: МБР, по крайней мере, не убивали всех, кто находился рядом с пусковой установкой.

До сих пор неизвестно, кто, где и как планировал проводить испытания исчадия ада. И кто бы отвечал, если бы SLAM сбилась с курса и пролетела над Лос-Анджелесом. Одно из безумных предложений предлагало привязать ракету за трос и гонять по кругу над безлюдными районами шт. Невада. Однако сразу возникал другой вопрос: что делать с ракетой, когда в реакторе выгорят последние остатки топлива? К месту, где “приземлится” SLAM, будет нельзя приближаться в течение столетий.

Жизнь или смерть. Окончательный выбор

В отличие от мистического “Плутона” родом из 1950-х гг., проект современной ядерной ракеты, озвученный В. Путиным, предлагает создание эффективного средства для прорыва американской ПРО. Средство гарантированного взаимного уничтожения - важнейший критерий ядерного сдерживания.

Превращение классической “ядерной триады” в дьявольскую “пентаграмму” - с включением в неё средств доставки нового поколения (ядерные крылатые ракеты неограниченной дальности и стратегические ядерные торпеды “статус-6”) вкупе с модернизацией боевых блоков МБР (маневрирующий “Авангард”) есть разумный ответ на появление новых угроз. Политика Вашингтона в отношении ПРО не оставляет Москве другого выбора.

“Вы развиваете свои антиракетные системы. Дальность антиракет возрастает, точность увеличивается, это оружие совершенствуется. Поэтому нам нужно адекватно отвечать на это, чтобы мы могли преодолевать систему не только сегодня, но и завтра, когда у вас появится новое оружие.”


В. Путин в интервью NBC.

Рассекреченные подробности экспериментов по программе SLAM/Плутон, убедительно доказывают, что создание ядерной крылатой ракеты было возможно (технически осуществимо) еще шесть десятилетий назад. Современные технологии позволяет вывести идею на новый технический уровень.

Меч ржавеет от обещаний

Несмотря на массу очевидных фактов, объясняющих причины появления “супероружия президента” и развеивающих любые сомнения насчет “невозможности” создания подобных систем, в России, как и за рубежом, остается множество скептиков. “Все перечисленное оружие - лишь средство информационной войны”. И следом - самые разные предложения.

Наверное, не стоит принимать всерьез карикатурных “экспертов”, таких, как И. Моисеев. Руководитель института космической политики (?), заявивший интернет-изданию The Insider: “Нельзя на крылатую ракету ставить ядерный двигатель. Да и нет таких двигателей”.

Попытки “разоблачения” заявлений президента делаются и на более серьезном аналитическом уровне. Подобные “расследования” немедленно обретают популярность среди либерально настроенной общественности. Скептики приводят следующие аргументы.

Все озвученные комплексы относятся к стратегическим сверхсекретным вооружениям, проверить или опровергнуть существование которых не представляется возможным. (В самом послании Федеральному собранию демонстрировалась компьютерная графика и кадры пусков, неотличимые от испытаний других типов крылатых ракет.) В то же время никто не говорит, к примеру, о создании тяжелого ударного беспилотника или боевого корабля класса “эсминец”. Оружие, которое в скором времени пришлось бы наглядно продемонстрировать всему миру.

По мнению некоторых “разоблачителей”, сугубо стратегический, “секретный” контекст сообщений может указывать на их неправдоподобный характер. Что ж, если это главный аргумент, то о чем тогда спор с этими людьми?

Встречается и другая точка зрения. Шокирующие о ядерных ракетах и беспилотных 100-узловых подлодках делаются на фоне очевидных проблем ВПК, встречающихся при реализации более простых проектов “традиционных” вооружений. Заявления о ракетах, разом превзошедших все существующие образцы вооружений, имеют резкий контраст на фоне общеизвестной ситуации с ракетостроением. Скептики приводят в пример массовые отказы при пусках “Булавы” или затянувшееся на два десятилетия создание РН “Ангара”. Сама началась в 1995 году; выступая в ноябре 2017 г., вице-премьер Д. Рогозин пообещал возобновить запуски “Ангары” с космодрома “Восточный” только в... 2021 г.

И, кстати, почему без внимания был оставлен “Циркон” - главная военно-морская сенсация предыдущего года? Гиперзвуковая ракета, способная перечеркнуть все существующие концепции морского боя.

Новость о поступлении в войска лазерных комплексов привлекло внимание производителей лазерных установок. Существующие образцы оружия направленной энергии создавались на обширной базе исследований и разработок высокотехнологичного оборудования для гражданского рынка. К примеру, американская корабельная установка AN/SEQ-3 LaWS представляет “пачку” из шести сварочных лазеров суммарной мощностью 33 кВт.

Заявление о создании сверхмощного боевого лазера контрастируют на фоне весьма слабой лазерной промышленности: Россия не входит в число крупнейших мировых производителей лазерного оборудования (Coherent, IPG Photonics или китайская Han" Laser Technology). Поэтому внезапное появление образцов лазерного оружия высокой мощности вызывает у специалистов неподдельный интерес.

Вопросов всегда больше, чем ответов. Дьявол кроется в мелочах, однако официальные источники дают крайне скудное представление о новейших вооружениях. Зачастую даже неясно, система уже готова к приятию на вооружение, или её разработка находится на определенном этапе. Известные прецеденты, связанные с созданием подобного оружия в прошлом, свидетельствуют, что возникающие при этом проблемы не решаются по щелчку пальцев. Любителей технических новинок волнует выбор места для проведения испытаний КР с ядерным двигателем. Или способы связи с подводным беспилотником “Статус-6” (фундаментальная проблема: под водой не работает радиосвязь, во время проведения сеансов связи субмарины вынуждены подниматься к поверхности). Было бы интересно услышать пояснение и о способах применения: по сравнению с традиционными МБР и БРПЛ, способными начать и окончить войну в течение часа, “Статусу-6” потребуется несколько суток, чтобы добраться до побережья США. Когда там уже никого не будет!

Окончен последний бой.
Остался кто-нибудь живой?
В ответ - только ветра вой…

С использованием материалов:
Air&Space Magazine (апрель-май 1990)
The Silent War, автор John Craven


В конце прошлого года российские ракетные войска стратегического назначения испытали совершенно новое оружие, существование которого, как раньше считалось, невозможно. Крылатая ракета с ядерным двигателем, которой военные эксперты дают обозначение 9М730 - именно то новое оружие, о котором президент Путин говорил в своем Послании Федеральному собранию. Испытание ракеты проводилось предположительно на полигоне Новая земля, ориентировочно в конце осени 2017 года, однако точные данные будут рассекречены еще не скоро. Разработчиком ракеты, также предположительно, является Опытное конструкторское бюро "Новатор" (город Екатеринбург). По заявлению компетентных источников ракета в штатном режиме поразила цель и испытания были признаны полностью успешными. Далее в СМИ появились предполагаемые фотографии пуска (выше) новой ракеты с ядерной силовой установкой и даже косвенные подтверждения, связанные с присутствием в предполагаемое время испытаний в непосредственной близости от полигона "летающей лаборатории" Ил-976 ЛИИ Громова с отметками "Росатома". Однако вопросов появилось еще больше. Реальна ли заявленная возможность ракеты осуществлять полет неограниченной дальности и за счет чего она достигается?

Характеристика крылатой ракеты с ядерной силовой установкой

Характеристики крылатой ракеты с ЯСО, появившиеся в СМИ сразу после выступления Владимира Путина, могут отличаться от реальных, которые будут известны позже. На сегодняшний день достоянием общественности стали следующие данные по размерам и ТТХ ракеты:

Длина
- стартовая - не менее 12 метров,
- маршевая - не менее 9 метров,

Диаметр корпуса ракеты - около 1 метра,
Ширина корпуса - около 1.5 метров,
Высота хвостового оперения - 3.6 - 3.8 метров

Принцип работы российской крылатой ракеты с ядерным двигателем

Разработки ракет с ядерной силовой установкой вели сразу несколько стран, причем разработки начались еще в далеких 1960-х годах. Конструкции, предложенные инженерами отличались лишь в деталях, упрощенно принцип работы можно описать следующим образом: ядерный ректор нагревает поступающую в специальные емкости смесь (разные варианты, от аммиака до водорода) с последующим выбросом через сопла под высоким давлением. Однако вариант крылатой ракеты, о которой говорил российский президент, не подходит ни под один из примеров конструкций, разрабатываемых ранее.

Дело в том, что, по словам Путина, ракета имеет практически неограниченную дальность полета. Это, конечно, нельзя понимать так, что ракета может летать годами, но можно расценить как прямое указание на то, что дальность ее полета многократно превышает дальность полета современных крылатых ракет. Второй момент, который нельзя не заметить, тоже связан с заявленной неограниченной дальностью полета и, соответственно, работы силового агрегата крылатой ракеты. К примеру гетерогенный реактор на тепловых нейтронах, испытанный в двигателе РД-0410, разработкой которого занимались Курчатов, Келдыш и Королев, имел ресурс работы на испытаниях только 1 час и в этом случае о неограниченной дальности полета такой крылатой ракеты с ядерным двигателем не может быть и речи.

Все это наводит на мысль о том, что российские ученые предложили совершенно новую, ранее не рассматриваемую концепцию строения, в которой для нагрева и последующего выброса из сопла используется вещество, имеющее намного экономный ресурс расходования на больших расстояниях. Как пример, это может быть ядерный воздушно-реактивный двигатель (ЯВРД) совершенно нового образца, в котором рабочей массой является атмосферный воздух, нагнетаемый в рабочие емкости компрессорами, нагреваемый ядерной установкой с последующим выбросом через сопла.

Также стоит отметить, что анонсированная Владимиром Путиным крылатая ракета с ядерным силовым агрегатом умеет облетать зоны активного действия систем противовоздушной и противоракетной обороны, а также держать путь к цели на малых и сверхмалых высотах. Это возможно только за счет оснащения ракеты системами следования ландшафту местности, устойчивыми к помехам, создаваемых средствами радиоэлектронной борьбы противника.

Можно было бы начать эту статью традиционным пассажем про то, как писатели-фантасты выдвигают смелые идеи, а ученые потом воплощают их в жизнь. Можно, но писать штампами не хочется. Лучше вспомнить, что современные ракетные двигатели, твердотопливные и жидкостные, имеют более чем неудовлетворительные характеристики для полетов на относительно дальние дистанции. Вывести груз на орбиту Земли они позволяют, доставить что-то на Луну – тоже, хотя и обходится такой полет дороже. А вот полететь на Марс с такими двигателями уже нелегко. Им подавай горючее и окислитель в нужных объемах. И объемы эти прямо пропорциональны расстоянию, которое надо преодолеть.


Альтернатива традиционным химическим ракетным двигателям – двигатели электрические, плазменные и ядерные. Из всех альтернативных двигателей до стадии разработки двигателя дошла только одна система – ядерная (ЯРД). В Советском Союзе и в США еще в 50-х годах прошлого века были начаты работы по созданию ядерных ракетных двигателей. Американцы прорабатывали оба варианта такой силовой установки: реактивный и импульсный. Первая концепция подразумевает нагрев рабочего тела при помощи ядерного реактора с последующим выбросом через сопла. Имульсный ЯРД, в свою очередь, движет космический аппарат за счет последовательных взрывов небольшого количества ядерного топлива.

Также в США был придуман проект «Орион», соединявший в себе оба варианта ЯРД. Сделано это было следующим образом: из хвостовой части корабля выбрасывались небольшие ядерные заряды мощностью около 100 тонн в тротиловом эквиваленте. Вслед за ними отстреливались металлические диски. На расстоянии от корабля производился подрыв заряда, диск испарялся, и вещество разлеталось в разные стороны. Часть его попадала в усиленную хвостовую часть корабля и двигала его вперед. Небольшую прибавку к тяге должно было давать испарение плиты, принимающей на себя удары. Удельная стоимость такого полета должна была быть всего 150 тогдашних долларов на килограмм полезной нагрузки.

Дошло даже до испытаний: опыт показал, что движение при помощи последовательных импульсов возможно, как и создание кормовой плиты достаточной прочности. Но проект «Орион» был закрыт в 1965 году как неперспективный. Тем не менее, это пока единственная существующая концепция, которая может позволить осуществлять экспедиции хотя бы по Солнечной системе.

До строительства опытного экземпляра удалось дойти только реактивным ЯРД. Это были советский РД-0410 и американский NERVA. Они работали по одинаковому принципу: в «обычном» ядерном реакторе нагревается рабочее тело, которое при выбросе из сопел и создает тягу. Рабочим телом обоих двигателей был жидкий водород, но на советском в качестве вспомогательного вещества использовался гептан.

Тяга РД-0410 составляла 3,5 тонны, NERVA давал почти 34, однако имел и большие габариты: 43,7 метров длины и 10,5 в диаметре против 3,5 и 1,6 метров соответственно у советского двигателя. При этом американский двигатель в три раза проигрывал советскому по ресурсу – РД-0410 мог работать целый час.

Однако оба двигателя, несмотря на перспективность, тоже остались на Земле и никуда не летали. Главная причина закрытия обоих проектов (NERVA в середине 70-х, РД-0410 в 1985 году) – деньги. Характеристики химических двигателей хуже, чем у ядерных, но цена одного запуска корабля с ЯРД при одинаковой полезной нагрузке может быть в 8-12 раз больше пуска того же «Союза» с ЖРД. И это еще без учета всех расходов, необходимых для доведения ядерных двигателей до пригодности к практическому применению.

Вывод из эксплуатации «дешевых» Шаттлов и отсутствие в последнее время революционных прорывов в космической технике требует новых решений. В апреле этого года тогдашний глава Роскосмоса А. Перминов заявил о намерении разработать и ввести в эксплуатацию совершенно новый ЯРД. Именно это, по мнению Роскосмоса, должно кардинально улучшить «обстановку» во всей мировой космонавтике. Теперь же выяснилось, кто должен стать очередными революционерами космонавтики: разработкой ЯРД займется ФГУП «Центр Келдыша». Генеральный директор предприятия А. Коротеев уже обрадовал общественность о том, что эскизный проект космического корабля под новый ЯРД будет готов уже в следующем году. Проект двигателя должен быть готов к 2019, а испытания запланированы на 2025 год.

Комплекс получил название ТЭМ – транспортно-энергетический модуль. Он будет нести ядерный реактор с газовым охлаждением. С непосредственным движителем пока не определились: либо это будет реактивный двигатель наподобие РД-0410, либо электрический ракетный двигатель (ЭРД). Однако последний тип пока нигде в мире массово не применялся: ими оснащались всего три космических аппарата. Но в пользу ЭРД говорит тот факт, что от реактора можно запитывать не только двигатель, но и множество других агрегатов или вообще использовать весь ТЭМ как космическую электростанцию.

Уже в конце нынешнего десятилетия в России может быть создан космический корабль для межпланетных путешествий на ядерной тяге. И это резко изменит ситуацию и в околоземном пространстве, и на самой Земле.

Ядерная энергодвигательная установка (ЯЭДУ) будет готова к полету уже в 2018 году. Об этом сообщил директор Центра имени Келдыша, академик Анатолий Коротеев . «Мы должны подготовить первый образец (ядерной энергетической установки мегаваттного класса. – Прим. "Эксперта Online") к летно-конструкторским испытаниям в 2018 году. Полетит она или нет, это другое дело, там может быть очередь, но она должна быть готова к полету», – передало его слова РИА « Новости» . Сказанное означает, что один из самых амбициозных советско-российских проектов в области освоения космоса вступает в фазу непосредственной практической реализации.

Суть этого проекта, корни которого уходят еще в середину прошлого века, вот в чем. Сейчас полеты в околоземное пространство осуществляются на ракетах, которые движутся за счет сгорания в их двигателях жидкого или твердого топлива. По сути, этот тот же двигатель, что и в автомобиле. Только в автомобиле бензин, сгорая, толкает поршни в цилиндрах, передавая через них свою энергию колесам. А в ракетном двигателе сгорающие керосин или гептил непосредственно толкают ракету вперед.

За прошедшие полвека эта ракетная технология была отработана во всем мире до мелочей. Но и сами ракетостроители признают, что . Совершенствовать – да, нужно. Пытаться увеличить грузоподъемность ракет с нынешних 23 тонн до 100 и даже 150 тонн на основе «усовершенствованных» двигателей сгорания – да, нужно пытаться. Но это тупиковый путь с точки зрения эволюции. «Сколько бы специалисты всего мира по ракетным двигателям ни трудились, максимальный эффект, который мы получим, будет исчисляться долями процентов. Из существующих ракетных двигателей, будь это жидкостные или твердотопливные, грубо говоря, выжато все, и попытки увеличения тяги, удельного импульса просто бесперспективны. Ядерные же энергодвигательные установки дают увеличение в разы. На примере полета к Марсу – сейчас надо лететь полтора-два года туда и обратно, а можно будет слетать за два-четыре месяца », – оценивал в свое время ситуацию экс-глава Федерального космического агентства России Анатолий Перминов .

Поэтому ещё в 2010 году, тогдашнем президентом России, а ныне премьер-министром Дмитрием Медведевым было дано распоряжение к концу этого десятилетия создать в нашей стране космический транспортно-энергетический модуль на основе ядерной энергетической установки мегаваттного класса. На разработку этого проекта до 2018 года из средств федерального бюджета, «Роскосмоса» и «Росатома» запланировано выделить 17 млрд рублей. 7,2 млрд из этой суммы выделено госкопорации «Росатом» на создание реакторной установки (этим занимается Научно-исследовательский и конструкторский институт энерготехники имени Доллежаля), 4 млрд – Центру имени Келдыша на создание ядерной энергодвигательной установки. 5,8 млрд рублей предназначается РКК «Энергия» для создания транспортно-энергетического модуля, то есть, проще говоря, ракеты-корабля.

Естественно, все эти работы делаются не на пустом месте. С 1970 по 1988 годы в космос только СССР запустил более трех десятков спутников-шпионов, оснащенных ядерными силовыми установками малой мощности типа «Бук» и «Топаз». Они использовались при создании всепогодной системы наблюдения за надводными целями на всей акватории Мирового океана и выдачи целеуказания с передачей на носители оружия или командные пункты – система морской космической разведки и целеуказания «Легенда» (1978 год).

NASA и американские компании, производящие космические аппараты и средства их доставки, так и не смогли за это время, хоть и трижды пытались, создать ядерный реактор, который бы устойчиво работал в космосе. Поэтому в 1988 году через ООН был проведен запрет на использование космических аппаратов с ядерными энергетическими двигательными установками, и производство спутников типа УС-А с ЯЭДУ на борту в Советском Союзе было прекращено.

Параллельно в 60-70-е годы прошлого века Центр имени Келдыша вел активные работы по созданию ионного двигателя (электроплазменного двигателя), который наиболее подходит для создания двигательной установки большой мощности, работающей на ядерном топливе. Реактор выделяет тепло, оно генератором преобразуется в электричество. С помощью электричества инертный газ ксенон в таком двигателе сначала ионизируется, а затем положительно заряженные частицы (положительные ионы ксенона) ускоряются в электростатическом поле до заданной скорости и создают тягу, покидая двигатель. Вот такой принцип работы ионного двигателя, прототип которого уже создан в Центре имени Келдыша.

«В 90-х годах XX века мы в Центре Келдыша возобновили работы по ионным двигателям. Сейчас должна быть создана новая кооперация для такого мощного проекта. Уже есть прототип ионного двигателя, на котором можно отрабатывать основные технологические и конструктивные решения. А штатные изделия еще нужно создавать. У нас срок определен – к 2018 году изделие должно быть готово к летным испытаниям, а к 2015 году должна быть завершена основная отработка двигателя. Дальше – ресурсные испытания и испытания всего агрегата в целом », – отмечал в прошлом году начальник отдела электрофизики Исследовательского центра имени М.В. Келдыша, профессор факультета аэрофизики и космических исследований МФТИ Олег Горшков.

Какая практическая польза России от этих разработок? Эта польза намного превышает те 17 млрд рублей, которые государство намерено потратить до 2018 года на создание ракеты-носителя с ядерной силовой установкой на борту мощностью 1 МВт. Во-первых, это резкое расширение возможностей нашей страны и человечества вообще. Космический корабль с ядерным двигателем дает реальные возможности людям совершить и другим планетам. Сейчас многие страны таких кораблей. Возобновились они и в США в 2003 году, после того как к американцам попали два образца российских спутников с ядерными силовыми установками.

Однако, несмотря на это, член спецкомиссии NASA по пилотируемым полетам Эдвард Кроули, например, считает, что на корабле для международного полета к Марсу должны стоять российские ядерные двигатели. «Востребован российский опыт в сфере разработки ядерных двигателей. Я думаю, у России есть очень большой опыт как в разработке ракетных двигателей, так и в ядерных технологиях. У нее есть также большой опыт адаптации человека к условиям космоса, поскольку российские космонавты совершали очень долгие полеты », – сказал Кроули журналистам весной прошлого года после лекции в МГУ, посвященной американским планам пилотируемых исследований космоса.

Во-вторых , такие корабли позволяют резко активизировать деятельность и в околоземном пространстве и дают реальную возможность началу колонизации Луны (уже есть проекты строительства на спутнике Земли атомных станций). «Использование ядерных энергодвигательных установок рассматривается для больших пилотируемых систем, а не для малых космических аппаратов, которые могут летать на других типах установок, использующих ионные двигатели или энергию солнечного ветра. Использовать ЯЭДУ с ионными двигателями можно на межорбитальном многоразовом буксире. К примеру, возить грузы между низкими и высокими орбитами, осуществлять полеты к астероидам. Можно создать многоразовый лунный буксир или отправить экспедицию на Марс », – считает профессор Олег Горшков. Подобные корабли резко меняют экономику освоения космоса. По расчетам специалистов РКК «Энергия», ракета-носитель на ядерной тяге обеспечивает снижение стоимости выведения полезного груза на окололунную орбиту более чем в два раза по сравнению с жидкостными ракетными двигателями.

В-третьих , это новые материалы и технологии, которые будут созданы в ходе реализации этого проекта и затем внедрены в другие отрасли промышленности – металлургию, машиностроение и т.д. То есть это один из таких прорывных проектов, которые реально могут толкнуть вперед и российскую, и мировую экономику.



Случайные статьи

Вверх